Si les coordonnées ne sont pas proportionnelles, alors les vecteurs ne sont pas colinéaires. Le vecteur nul →0 est colinéaire à tout vecteur. Car quel que soit un vecteur →u, on peut toujours écrire: →0=0⋅→u. 3 points A, B, C sont alignés ⇔ →AB et →AC sont colinéaires.
Le déterminant de u et v est le réel det(u ;v )=xy′−yx′. Propriété : Deux vecteurs sont colinéaires si, et seulement si, leur déterminant est nul. Le déterminant de u (−3 ;9) et v (1 ;−3) est det(u ;v )=(−3)×(−3)−9×1=0.
Le vecteur est un vecteur directeur de la droite d'équation ax + by + c = 0. Soient (d) la droite de vecteur directeur et (d') la droite de vecteur directeur . Les droites (d) et (d') sont parallèles si et seulement si et sont colinéaires, c'est-à-dire si et seulement si le déterminant de et de est nul.
Propriétés : Les points A, B et C sont alignés si et seulement si les vecteurs ⃗ AB et ⃗ AC sont colinéaires. Les droites (AB) et (CD) sont parallèles si et seulement si les vecteurs ⃗ AB et ⃗ CD sont colinéaires.
2) Les vecteurs u, v et w sont non coplanaires ssi ils forment une base de l'espace, c'est à dire ssi au+bv+cw=0 implique a=b=c=O. Donc, on peut écrire le système d'équation à trois inconnues orrespondant à au+bv+cw=0. S'il a une solution non triviale, les vecteurs sont coplanaires, sinon ils ne le sont pas.
Étymologiquement, colinéaire signifie sur une même ligne : en géométrie classique, deux vecteurs sont colinéaires si on peut en trouver deux représentants situés sur une même droite. sont parallèles. Cette équivalence explique l'importance que prend la colinéarité en géométrie affine.
Définition : Trois vecteurs sont coplanaires s'ils possèdent des représentants appartenant à un même plan. Propriété : Soit , et trois vecteurs non coplanaires. Pour tout vecteur , il existe un unique triplet tel que .
Remarques : Deux vecteurs non nuls sont colinéaires si et seulement s'ils ont la même direction. Le vecteur est colinéaire à tout vecteur du plan.
Solution détaillée. Les trois points A 1 , A 2 , A 3 sont alignés si et seulement si les vecteurs A 1 A 2 → et A 1 A 3 → sont colinéaires, donc si et seulement si le déterminant des vecteurs A 1 A 2 → , A 1 A 3 → , est nul.
Deux vecteurs non nuls sont orthogonaux si, et seulement si, u ⋅v =0.
Des vecteurs (au moins au nombre de 3) sont dits coplanaires si leurs représentants appartiennent au même plan. appartienent au même plan ce qui implique le point correspondant à leur origine (O) ainsi que les points correspondant à leurs extêmités ( A, B et C) font partie d'un même plan.
Indice : En géométrie vectorielle, pour montrer que 4 points sont coplanaires, il faut montrer que trois des vecteurs qu'ils forment sont coplanaires. Pour ça, il faut exprimer un des trois vecteurs en fonction des deux autres.
Des lignes, des segments ou des vecteurs sont colinéaires s'ils sont tous sur la même ligne, ou se dirigent tous dans la même direction; s'ils sont parallèles, en fait. Des points sont alignés s'ils sont portés par la même droite.
Les vecteurs ⃗ u et ⃗ v sont colinéaires si et seulement si l'un est le produit de l'autre par un réel, c'est-à-dire s'il existe un réel k tel que ⃗ ⃗ v =ku . Le réel k est le coefficient de colinéarité. Ainsi, deux vecteurs non nuls sont colinéaires lorsqu'ils ont la même direction.
Produit scalaire et vecteurs colinéaires
Si ⃗ AB et ⃗ CD sont deux vecteurs colinéaires non nuls, alors : 1er cas, vecteurs de même sens : ⃗ ⋅ C D ⃗ = A B × C D \vec {AB}\cdot \vec {CD}=AB\times CD AB ⋅CD =AB×CD.
Dans un quadrilatère ABCD, si les vecteurs AB et DC sont égaux, alors ABCD est un parallélogramme.
« Lorsque deux plans sont parallèles, tout plan coupant l'un coupe l'autre et les droites d'intersection sont parallèles ». « Trois points coplanaires sont toujours alignés ». « Trois points alignés sont toujours coplanaires ». « Quatre points non alignés forment toujours un plan ».
Si AC + CB = AB alors C appartient au segment [AB] donc les points sont alignés. dans le triangle. Propriété : Si un point M appartient à la médiatrice de [AB] alors AM = BM. Si AM = BM alors M appartient à la médiatrice de [AB].
Trois points ou plus qui appartiennent à la même droite sont appelés points alignés. Si un point n'appartient pas à la même droite que les autres points, on dit que cet ensemble de points est non aligné.
Propriété : Deux vecteurs colinéaires non nuls ont la même direction. Conséquences géométriques : Dire que les vecteurs et sont colinéaires signifie que les points A, B, C sont alignés. Dire que les vecteurs non nuls et sont colinéaires signifie que les droites (AB) et (CD) sont parallèles.
Soit v1 et v2 deux vecteurs d'un espace vectoriel sur R pour faire simple. Ils sont colinéaires si et seulement si il existe un réel non nul a tel que v2 = a * v1. Les flèches ont la même direction mais pas forcément la même longueur.
Lorsque deux vecteurs ont même direction (ce qui correspond à "parallèles") on dit que les vecteurs sont colinéaires. Ainsi, deux vecteurs et sont colinéaires s'il existe un nombre k tel que c'est à dire qu'un vecteur est un multiple de l'autre.
Trois points A, B et C définissent un plan si et seulement s'ils ne sont pas alignés. Soient les points A\left(1;-2;0\right), B\left(3;4;0\right) et C\left(3;1;5\right). Déterminer si les points A, B et C définissent un plan.
On peut vérifier que ces deux vecteurs sont linéairement indépendants, donc ils forment une base de F. Si z − 3y + 3x = 0, il n'y a pas de solution. Si z − 3y + 3x = 0, on obtient un syst`eme triangulaire, il y a donc une unique solution. Conclusion : (x, y, z) ∈ F ⇐⇒ z − 3y + 3x = 0.
Trois points A, B et C sont alignés si et seulement si les vecteurs A B → \overrightarrow{AB} AB et A C → \overrightarrow{AC} AC sont colinéaires. C'est-à-dire : « A, B et C sont alignés si et seulement s'il existe un réel k tel que A C → = k A B → \overrightarrow{AC} = k \overrightarrow{AB} AC =kAB ».