On repère les segments de même longueur : AB = AC et CD = CE. Donc ABC est isocèle en A et CDE est isocèle en C. Dans le triangle CDE (isocèle en C), les deux angles qui n'ont pas C comme sommet sont égaux.
Un triangle ABC est rectangle et isocèle lorsque la longueur du côté [AB] est égale à la longueur du côté [AC] et que l'angle A vaut 90°. Plus précisément, on peut dire que le triangle est rectangle isocèle en A.
1 sommet principal
Le sommet commun aux 2 côtés de même longueur est le sommet B. On dit que le triangle ABC est isocèle en B. On sait alors que les 2 côtés issus du sommet B, [BA] et [BC], sont de même longueur.
Comment prouver qu'un triangle est isocèle sans mesure ? Une méthode consiste à utiliser la propriété des angles d'un triangle isocèle, qui stipule que deux angles d'un triangle isocèle sont égaux. Si l'on peut prouver que deux angles d'un triangle sont égaux, alors le triangle est isocèle.
Un triangle isocèle est un triangle particulier qui a deux côtés de même mesure.
2- zB est le conjugué de zA. Donc ces deux affixes ont le même module. Ainsi OA=OB O A = O B donc le triangle AOB A O B est isocèle en O.
Triangle isocèle
Il suffit de soustraire de 180° la mesure de l'angle du sommet principal, puis de diviser le résultat par 2. Dans ce triangle isocèle, A est le sommet principal et [BC] est la base. Chaque angle à la base doit mesurer 63° pour que la somme des angles soit égale à 180°. 54° + 63° + 63° = 180°.
De fait, tout triangle dont la somme de deux angles mesure 90° est nécessairement un triangle rectangle. Un triangle rectangle comportant deux côtés égaux est isocèle. Tout triangle comportant deux angles de 45° chacun est un triangle rectangle isocèle.
La réciproque du théorème Pythagore dit que « si un triangle est rectangle, alors le carré de la plus grande longueur (l'hypoténuse) est égale à la somme des carrés des longueurs des deux autres côtés ». La réciproque de Pythagore permet donc de montrer si un triangle est rectangle.
Grâce à la propriété de Pythagore
Si dans un triangle, le carré de la longueur du plus grand côté est égal à la somme des carrés des longueurs des deux autres côtés, alors ce triangle est rectangle et l'angle droit est l'angle opposé au plus grand côté, et le plus grand côté de ce triangle est son hypoténuse.
D'après le théorème de Pythagore, si, dans un triangle, le carré du côté le plus long est égal à la somme des carrés des deux autres côtés, alors c'est un triangle rectangle. Si BC2 = AC2 + AB2 alors le triangle ABC est rectangle en A.
Si AB² = AC² + BC² alors le triangle ABC est rectangle en C. Si AB² n'est pas égal à AC² + BC² alors le triangle n'est pas rectangle en C. En effet, si le carré de la longueur du plus grand côté d'un triangle n'est pas égal à la somme des carrés des longueurs des deux autres côtés alors ce triangle n'est pas rectangle.
Pour calculer la longueur de l'hypoténuse, le théorème de Pythagore est appliqué. Ce théorème stipule que: dans un triangle rectangle le carré construit sur l'hypoténuse est toujours équivalent à la somme des carrés construits sur les cathets. Dans la formule: AC =? (AH² + CH²).
ABC est un triangle isocèle A est le sommet principal.
Il existe quatre principaux types de triangles qui ont chacun des propriétés particulières : le triangle quelconque, le triangle isocèle, le triangle équilatéral et le triangle rectangle. Un triangle possède trois côtés, trois sommets et trois angles.
triangle ayant deux côtés de même longueur et, par conséquent, les angles à la base de même mesure.
La réciproque du théorème de Pythagore
Si dans un triangle ABC, on a BC^2=AB^2+AC^2, alors le triangle ABC est rectangle en A. D'une part, BC^2=5^2=25. D'autre part, AB^2+AC^2=3^2+4^2=9+16=25.
Il s'est servi de cette observation pour construire un triangle rectangle tridimensionnel dont les deux côtés égaux se rejoignent à angle droit avant de déduire sa célèbre équation : « le carré de l'hypoténuse est égal à la somme des carrés de la catheti » ou simplement « a² + b² = c² », comme on le dit aujourd'hui.
Si un triangle est rectangle, alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Soit le triangle ABC rectangle en A ci-contre. D'après le théorème de Pythagore, on a : BC2 = AB2 + AC2.
Si deux droites parallèles, toute perpendiculaire à l'une est perpendiculaire à l'autre.
Propriété 4b: Si un triangle est isocèle, alors ses angles à la base ont même mesure.
Triangle rectangle isocèle — Les angles d'un triangle rectangle isocèle ont pour mesures respectives 90°, 45° et 45°.
Passons aux explications : Les 3 angles du haut de la figure a, b et c forment un angle dit “plat”. C'est à dire que la somme des angles a, b et c fait 180° : a + b + c = 180°. On fait ensuite le même raisonnement avec c et e : l'angle a en haut à droite est le même que l'angle e en bas à droite.
Si les diagonales d'un quadrilatère sont axes de symétrie alors c'est un losange. Si les diagonales d'un parallélogramme sont perpendiculaires alors c'est un losange. Si un parallélogramme a deux côtés consécutifs de même longueur alors c'est un losange.