Comment démontrer que le triangle ABC est rectangle en A ?

Interrogée par: Bernard Le Goff-Gauthier  |  Dernière mise à jour: 15. Januar 2025
Notation: 4.8 sur 5 (18 évaluations)

D'après le théorème de Pythagore, le triangle ABC est rectangle si : BC² = AB² + AC². Ainsi, d'après le théorème de Pythagore, BC² = AB² + AC². Alors, le triangle ABC est rectangle en A. Son hypoténuse est [BC].

Comment montrer que ABC est un triangle rectangle en A ?

Si dans un triangle, le carré de la longueur du plus grand côté est égal à la somme des carrés des longueurs des deux autres côtés, alors ce triangle est rectangle et l'angle droit est l'angle opposé au plus grand côté, et le plus grand côté de ce triangle est son hypoténuse.

Comment on fait pour démontrer qu'un triangle est rectangle ?

Dans un triangle:

Si le carré de la mesure de son plus grand côté est égal à la somme des carrés des mesures des deux autres côtés, alors ce triangle est rectangle et le plus grand côté est son hypoténuse.

Comment justifier que le triangle ABC est rectangle en B ?

Exemple : Soit un triangle ABC tel que AB = 5 cm, BC = 12 cm et AC = 13 cm. Montrer que le triangle ABC est rectangle. L'égalité de Pythagore est vérifiée, le triangle ABC est donc rectangle en B car [AC] est l'hypoténuse. (On parle de réciproque du théorème de Pythagore).

Comment prouver qu'un triangle ABC est rectangle en C ?

Si AB² = AC² + BC² alors le triangle ABC est rectangle en C. Si AB² n'est pas égal à AC² + BC² alors le triangle n'est pas rectangle en C. En effet, si le carré de la longueur du plus grand côté d'un triangle n'est pas égal à la somme des carrés des longueurs des deux autres côtés alors ce triangle n'est pas rectangle.

T'as 2 minutes ! Calculer une longueur

Trouvé 26 questions connexes

Comment prouver qu'un triangle est rectangle avec le cosinus ?

Dans un triangle rectangle, le rapport du coté adjacent et de l'hypoténuse ne dépend que de l'angle aigu qu'ils forment. On appelle ce rapport le cosinus de l'angle aigu. Exemple : ABC est un triangle rectangle en A tel que AB=4cm et BC=8cm.

Quelle est la propriété d'un triangle rectangle ?

En géométrie euclidienne, un triangle rectangle est un triangle dont l'un des angles est droit. Les deux autres angles sont alors complémentaires, de mesure strictement inférieure. On nomme alors hypoténuse le côté opposé à l'angle droit. Les deux autres côtés, adjacents à l'angle droit, sont appelés cathètes.

Comment démontrer qu'un triangle est rectangle 6ème ?

Pour montrer qu'un triangle est rectangle, il y a au moins 3 méthodes. - Méthode 1 : utiliser les propriétés des droites parallèles et des droites perpendiculaires pour prouver qu'il y a un angle droit. - Méthode 2 : utiliser la caractérisation de Pythagore et l'égalité de Pythagore.

Comment montrer qu'un triangle est rectangle 4eme ?

À l'aide du cercle circonscrit

Si l'un des côtés d'un triangle est un diamètre de son cercle circonscrit, alors ce triangle est rectangle et ce diamètre est son hypoténuse.

Comment démontrer ?

Comment démontrer une affirmation ? Pour démontrer une affirmation, nous devons utiliser un raisonnement mathématique. Des exemples sont le raisonnement par récurrence, le raisonnement déductif, le raisonnement par contre-exemple, le raisonnement par disjonction de cas et le raisonnement par l'absurde.

Comment savoir si un triangle est rectangle sans équerre ?

En trigonométrie donc, le grand côté du triangle est l'hypoténuse et les deux autres côtés sont appelés cathètes. Notons par ailleurs que la somme des angles de tout triangle mesure 180°. De fait, tout triangle dont la somme de deux angles mesure 90° est nécessairement un triangle rectangle.

Quelle est la formule pour le théorème de Thalès ?

Théorème de Thalès (appliqué au triangle)

ABC est un triangle. M se trouve sur le segment [AB] et N sur le segment [AC]. D'après le théorème de Thalès, si les droites (BC) et (MN) sont parallèles, alors on a l'égalité : \frac{AM}{AB} = \frac{AN}{AC} =\frac{MN}{BC}.

Quelle est la phrase pour le théorème de Pythagore ?

v Théorème de Pythagore : Si un triangle est rectangle, alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Soit le triangle ABC rectangle en A ci-contre. D'après le théorème de Pythagore, on a : BC2 = AB2 + AC2.

Comment affirmer que ABCD est un rectangle ?

On considère le quadrilatère ABCD. Peut-on affirmer que ABCD est un rectangle ? Oui car ses diagonales se coupent en leur milieu et il a un angle droit.

C'est quoi la réciproque du théorème de Pythagore ?

La réciproque du théorème Pythagore dit que « si un triangle est rectangle, alors le carré de la plus grande longueur (l'hypoténuse) est égale à la somme des carrés des longueurs des deux autres côtés ». La réciproque de Pythagore permet donc de montrer si un triangle est rectangle.

Comment calculer le triangle ABC ?

Dans un triangle rectangle ABC, où l'angle droit est B, l'hypoténuse est donc le côté AC. Pythagore a ainsi théorisé que le carré de la longueur de l'hypoténuse est égal à la somme des carrés des 2 autres côtés (soit dans notre exemple, AC2 = AB2 + BC2).

Comment calculer un triangle rectangle avec le théorème de Pythagore ?

Il s'est servi de cette observation pour construire un triangle rectangle tridimensionnel dont les deux côtés égaux se rejoignent à angle droit avant de déduire sa célèbre équation : « le carré de l'hypoténuse est égal à la somme des carrés de la catheti » ou simplement « a² + b² = c² », comme on le dit aujourd'hui.

Comment faire la réciproque du théorème de Thalès ?

Réciproque du théorème de Thalès

Montrer que les droites (AB) et (TE) sont parallèles. Les produits en croix sont égaux donc CD / AC = CE / BC. On sait également que les points A,D,C et B,E,C sont alignés dans le même ordre. Donc d'après la réciproque du théorème de Thalès (AB) et (DE) sont parallèles.

Comment vérifier le théorème de Pythagore ?

Théorème de Pythagore :

Si un triangle est rectangle , alors le carré de la longueur de son hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Exemple 1 : Soit le triangle ABC rectangle en A ([BC] est donc l'hypoténuse), alors BC²=AC²+BA².

Quels sont les 4 types de triangles ?

Un triangle plat est un triangle dont les sommets sont alignés.
  • Un triangle isocèle est un triangle ayant au moins deux côtés de même longueur. ...
  • Un triangle équilatéral est un triangle dont les trois côtés ont la même longueur. ...
  • Un triangle rectangle est un triangle ayant un angle droit, c'est-à-dire de mesure 90°.

Quel est la formule de triangle rectangle ?

Il s'agit de triangles rectangles dont les côtés de l'angle droit ont pour mesures a et b. Applique la formule du calcul de l'aire d'un triangle rectangle : aire = (a × b) ÷ 2. Commence par calculer 2 × aire. C'est le résultat de a × b.

Quelle est la définition d'un triangle rectangle ?

En géométrie, un triangle rectangle est un triangle dont l'un des angles est droit, c'est-à-dire qu'il mesure 90°. Le côté opposé à l'angle droit est appelé l'hypoténuse. C'est toujours le côté de plus grande longueur.

Pourquoi on appelle un triangle rectangle ?

(Géométrie) Triangle dont l'un des angles est un angle droit.

Quand utiliser la loi des cosinus ?

En géométrie, le calcul du cosinus d'un angle est utilisé en trigonométrie. Il peut servir par exemple à couper un gâteau en plusieurs parts parfaitement égales.

Comment utiliser la loi des sinus ?

Considérons un triangle 𝐴 𝐵 𝐶 rectangle en 𝐴 . Dans le triangle initial, le côté 𝑎 est l'hypoténuse et le côté opposé à l'angle 𝐵 est le côté 𝑏 . Ainsi, le sinus de l'angle 𝐵 est égal à la longueur du côté opposé divisé par la longueur de l'hypoténuse.

Article précédent
Quelle marque pour peau Acneique ?