Les médiatrices des trois côtés sont (bien) concourantes en . Donc, si on pose r = O A = O B = O C , les trois sommets du triangle A B C appartiendraient bien à un même cercle de centre et de rayon , qu'on appelle le cercle circonscrit au triangle A B C .
Les médianes d'un triangle sont concourantes en un point appelé le centre de gravité du triangle. De plus, ce point est situé au deux tiers de chaque médiane à partir du sommet. La droite (BM) ( B M ) est parallèle à la droite (GC)=(C′G) ( G C ) = ( C ′ G ) .
La médiatrice d'un segment est la droite perpendiculaire à ce segment et qui passe par son milieu. Les trois médiatrices d'un triangle sont concourantes en un point qui est le centre du cercle circonscrit au triangle. La bissectrice d'un angle est la droite qui le partage en deux angles de même mesure.
Théorème Les médianes d'un triangle sont concourantes (elles se coupent en un même point). Leur point d'intersection est le centre de gravité. Le centre de gravité est situé aux deux tiers d'une médiane en partant du sommet dont elle est issue.
On dit que trois droites sont concourantes si elles se coupent en un seul point , appelé le point de concours de ces trois droites. Théorème et définition. Dans un triangle A B C quelconque, les trois hauteurs sont concourantes et leur point de concours s'appelle l'orthocentre du triangle A B C .
La hauteur issue de A est perpendiculaire à [BC] donc à [B'C']. Comme elle passe de plus par son milieu, c'est la médiatrice du segment [B'C']. On démontre ainsi que les trois hauteurs du triangle ABC sont les trois médiatrices du triangle A'B'C'. Par conséquent, elles sont concourantes.
Le centre du cercle circonscrit au triangle est le point d'intersection des trois médiatrices du triangle. S'il s'agit d'un triangle rectangle, le centre du cercle circonscrit au triangle est le milieu de l'hypoténuse du triangle.
Déterminer la médiane
Pour calculer la médiane : On classe les valeurs de la série statistique dans l'ordre croissant : Si le nombre de valeurs est impair, la médiane est la valeur du milieu. S'il est pair, la médiane est la demi-somme des deux valeurs du milieu.
Il y a trois médianes dans un triangle. Le point de rencontre de ces médianes se nomme le centre de gravité du triangle.
Si dans un cercle, un triangle a pour sommets les 2 extrémités d'un diamètre et un point sur le cercle, alors ce triangle est rectangle en ce 3e point. Si un triangle est rectangle, alors la longueur de la médiane issue de l'angle droit est égale à la moitié de la longueur de l'hypoténuse.
Conclusion. Les médiatrices des trois côtés sont (bien) concourantes en . Donc, si on pose r = O A = O B = O C , les trois sommets du triangle A B C appartiendraient bien à un même cercle de centre et de rayon , qu'on appelle le cercle circonscrit au triangle A B C .
OB = OC donc O appartient à la médiatrice de [BC]. Le centre du cercle circonscrit est le point de concours des 3 médiatrices du triangle. En pratique, il suffit de tracer deux médiatrices pour déterminer le centre du cercle circonscrit à un triangle. On trace les médiatrices du triangle (il suffit d'en tracer deux).
Ainsi, G G est sur la droite (AA′) ( A A ′ ) . De même, G G est sur la droite (BB′) ( B B ′ ) et G G est sur la droite (CC′) ( C C ′ ) . Ainsi, les trois droites sont concourantes en G G . De plus, puisque G G est le barycentre de (A,1) ( A , 1 ) et (A′,2) ( A ′ , 2 ) , on a −−→AG=23−−→AA′ A G → = 2 3 A A ′ → .
L'orthocentre est le point d'intersection des 3 hauteurs d'un triangle, il peut être à l'extérieur du triangle. Pour trouver ses coordonnées, trouve l'équation de deux hauteurs et leur point d'intersection.
Théorème — Dans un triangle rectangle, la longueur de la médiane issue du sommet de l'angle droit vaut la moitié de la longueur de l'hypoténuse. Ce théorème possède une réciproque.
La médiatrice d'un segment est la droite qui coupe ce segment en son milieu perpendiculairement. Dans un triangle, les médiatrices sont concourantes en un point appelé centre du cercle circonscrit au triangle.
I est le milieu de [BC]. J est le milieu de [AC]. K est le milieu de [BA]. On remarque que les trois médianes sont concourantes.
En géométrie, un cercle circonscrit à un polygone est un cercle qui passe par tous les sommets du polygone. Le polygone est alors dit inscrit dans le cercle : on parle de polygone inscriptible ou parfois de polygone cyclique.
La médiatrice d'un segment est la droite qui passe par le milieu de ce segment, et qui lui est perpendiculaire. La bissectrice est une demi-droite qui coupe un angle en deux.
La médiane divise une série statistique en deux parts égales, alors que la moyenne est la somme des valeurs de la série, divisée par le nombre de valeurs de cette même série. Concrètement : la médiane est le point central, elle permet d'éliminer les valeurs extrêmes et d'exprimer la valeur du milieu.
Comme l'effectif total est pair, il n'y a non pas une mais deux valeurs centrales. On divise l'effectif total par 2 : 50 ÷ 2 = 25. Les deux valeurs centrales sont la 25ème et la 26ème et la médiane est la moyenne de ces deux valeurs. La 25ème et la 26ème valeur sont 1,20 m.
Si le rang est un nombre décimal, alors la médiane est la moyenne des 2 valeurs autour du rang correspondant. Additionne ces 2 valeurs centrales, puis divise le résultat par 2. Le nombre obtenu est la médiane de la série statistique. La médiane est la moyenne des 2 valeurs (8 et 10) autour du rang 4,5.
En mathématiques, des droites concourantes sont des droites qui ont un point d'intersection commun, ce point étant appelé point de concours.
Les trois médianes d'un triangle sont concourrantes en un point appelé centre de gravité du triangle.
L'union est commutative, c'est-à-dire que, pour des ensembles A et B quelconques, on a : A ∪ B = B ∪ A. L'intersection est distributive sur l'union, c'est-à-dire que, pour des ensembles A, B et C quelconques, on a : A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).