L'intégrale ∫baf(x)dx avec a,b éventuellement infini est 'définie' ou 'bien définie' si elle existe. La fonction t↦∫b(t)a(t)f(x,t)dx pour t∈T est 'bien définie' si l'intégrale existe pour toutes les valeurs de t dans l'intervalle T.
Si la courbe passe au-dessus et en-dessous de l'axe des 𝑥 dans l'intervalle [ 𝑎 ; 𝑏 ] , alors son intégrale définie est la différence entre l'aire au-dessus de l'axe des 𝑥 et l'aire sous l'axe des 𝑥 , dans l'intervalle [ 𝑎 ; 𝑏 ] .
Comment justifier l'existence d'une intégrale ? L'existence d'une intégrale peut être justifiée à l'aide de plusieurs théorèmes mathématiques tels que le théorème de convergence monotone et le théorème de convergence dominée. Ces théorèmes garantissent l'existence de l'intégrale sous certaines conditions.
En terme de différentielle, on a la caractérisation suivante : Proposition : Soit f une fonction définie sur un ouvert U de Rn. R n . f est de classe C1 sur U si et seulement si f est différentiable sur U et si l'application x↦dfx x ↦ d f x est continue.
Théorème (théorème fondamental du calcul intégral) : Si f est une fonction continue et positive sur [a,b] , alors la fonction F définie sur [a,b] par F(x)=∫xaf(t)dt F ( x ) = ∫ a x f ( t ) d t est dérivable sur [a,b] , et a pour dérivée f .
On dit que f est indéfiniment dérivable si f est k-dérivable pour tout k. On dit que f est de classe Ck si f(k) existe et est continue.
On retiendra qu'une intégrale peut être positive ou négative mais qu'une aire, elle, est toujours positive.
Une fonction numérique f dГune variable réelle définie sur un intervalle I est dite de classe 1 C si elle est dérivable sur cet intervalle et si sa dérivée 'f est continue sur cet intervalle. a) Si f et g sont deux fonctions de classe 1 C sur un intervalle I alors les fonctions f g et f g sont de classe 1 C sur I .
Si, pour tout entier naturel n, I_{n+1}-I_{n}\geqslant 0, on en déduit que la suite est croissante. Si, pour tout entier naturel n, I_{n+1}-I_{n}\leqslant 0, on en déduit que la suite est décroissante.
si la dérivée n-i`eme, notée f(n), est continue, alors on dit que f est de classe Cn. (5) Si f est de classe Cn pour tout n ∈ N, alors f est infiniment dérivable, on dit que f est de classe C∞.
Pour montrer qu'une application est bien définie, il faut s'assurer que pour chaque antécédent x on définit bien une image unique y dans l'ensemble d'arrivée (d'où l'importance de l'ensemble d'arrivée).
Le concept d'intégrale a été raffiné depuis son introduction au XVII e siècle par Leibniz et Newton, permettant ainsi de les calculer pour des fonctions de moins en moins régulières. On rencontre ainsi aujourd'hui les intégrales dites de Riemann, de Lebesgue ou de Kurzweil-Henstock.
Si f est une fonction à valeurs réelles, alors f + et f − sont intégrables sur I. Si f est une fonction à valeurs complexes, alors Re(f ) et Im(f ) sont intégrables sur I. 30.3 ➙ Si f est intégrable sur I, alors l'intégrale de f sur I est conver- gente.
Toute fonction en escalier est bornée car elle ne prend qu'un nombre fini de valeurs. Si f est réglée, il existe ϕ en escalier telle que, pour tout x ∈ [a, b], |f(x) − ϕ(x)| ≤ 1, et donc |f(x)|≤|ϕ(x)| + 1, ce qui prouve que f est bornée.
Intégrale et primitives
L'intégrale de la fonction nulle est nulle sur tout intervalle inclus dans l'ensemble des réels ; les primitives de la fonction nulle (sur ℝ) sont donc les fonctions constantes.
La différence entre primitive et intégrale est qu'une primitive est une fonction tandis qu'une intégrale est un réel exprimé comme une aire algébrique (pouvant être négatif).
On parlera d'intégrale généralisée ou bien d'intégrale impropre. f(x)dx . Si l'intégrale n'est pas convergente, on dira qu'elle est divergente. Ce statut est appelé nature de l'intégrale.
Ainsi la fonction monotone définie par f : [ 0 , 1 ] → R , ∀ x ∈ [ 0 , 1 ] f ( x ) = 0 et f ( 1 ) = 1 est intégrable et son intégrale vaut de façon évidente .
Pour évaluer 𝑓 [ 𝑓 ( 𝑥 ) ] on utilise une fonction composée, qui peut aussi s'écrire ( 𝑓 ∘ 𝑓 ) ( 𝑥 ) . Pour évaluer 𝑓 [ 𝑓 ( 𝑥 ) ] en une valeur spécifique de 𝑥 , on évalue d'abord 𝑓 ( 𝑥 ) en cette valeur de 𝑥 . Puis on évalue 𝑓 ( 𝑥 ) encore une fois, cette fois en utilisant l'image obtenue précédemment comme argument.
On dit que f est de classe C2 sur U si elle est de classe C1 et que toutes ses dérivées partielles sont de classe C1 sur U. Par récurrence, on dit que f est de classe Ck sur U si elle est de classe C1 et que toutes ses dérivées partielles sont de classe Ck−1 sur U. = ∂ ∂xj ( ∂f ∂xj ) si j = k.
fonction de classe C-infini. Une fonction définie sur un domaine I est dite de classe-infini sur I si elle est infiniment dérivable sur ce domaine. La plupart des fonctions usuelles sont de classe C-infini.
Dériver par rapport à une variable comme si l'autre était constante! Pour tout réel y y fixé, la fonction x↦excosy x ↦ e x cos y est dérivable sur R R , ce qui justifie l'existence de la dérivée partielle par rapport à la première variable dans le premier exemple.
Aire sous la courbe dans le cas des fonctions non positives
Dans le cas des fonctions négatives, l'intégrale vaut bien l'aire entre la courbe et l'axe des abscisses, mais avec un signe négatif devant. Une aire reste toujours positive alors qu'une intégrale d'une fonction négative est négative.
Autrement dit, si une fonction est intégrable sur I=]a,b[ I = ] a , b [ , alors son intégrale sur I est convergente.
La convergence
Quand x tend vers +∞, le premier terme a une limite et l'intégrale ∫x1cos(t)t2dta également une limite.