La courbe représentative d'une fonction homographique est une hyperbole. La forme réduite f : x ↦→ A + B x−α avec B = 0 d'une fonction homographique fait apparaître le centre de symétrie Ω(α;A) ainsi que les deux asymptotes d'équation x = α et y = A de l'hyperbole.
Les fonctions homographiques. Ce sont les fonctions de la forme : ax+bcx+d,a≠0, c≠0. En factorisant par a au numérateur et par c au dénominateur, on obtient : a(x+ba)c(x+dc)=ac×x+bax+dc.
Règle. Placer le centre de l'hyperbole et déterminer son orientation. Tracer les asymptotes en prolongeant les diagonales du rectangle. Tracer l'hyperbole en passant par les sommets et en s'approchant des asymptotes, sans jamais y toucher.
Représentation graphique et propriétés
La courbe représentative de la fonction inverse est une hyperbole. La courbe représentative de la fonction inverse ne coupe pas l'axe des abscisses. Il n'y a aucun point d'abscisse 0 sur la courbe de la fonction inverse puisque cette fonction n'est pas définie en 0.
Anneaux et corps. des entiers relatifs, seuls 1 et –1 ont un inverse : eux-mêmes respectivement. des rationnels, l'inverse de 2 est 1⁄ 2 = 0,5 et l'inverse de 4 est 0,25.
Pour tracer une parabole, il vous suffit alors de savoir placer son sommet et de calculer, à l'aide de l'équation, les coordonnées de quelques points de chaque côté de ce sommet : il suffit alors de relier tous ces points.
L'hyperbole possède deux asymptotes, contre aucune pour la parabole. La parabole ne possède qu'un axe de symétrie, contre deux pour l'hyperbole. L'hyperbole possède un centre de symétrie, contre aucun pour la parabole.
La courbe représentative d'une fonction polynomiale du second degré d'équation y = ax² + bx + c (a, b et c sont des constantes réelles et a ≠0), est une parabole.
Une suite homographique est une suite définie par la donnée de u0 et une relation du type : ou a, b,c,d sont des réels ( on peut prendre des nombres complexes aussi ) tels que ad - bc ≠ 0 (sinon le rapport numérateur dénominateur est constant ou non défini ) et c ≠ 0 .
+ β , où α et β sont deux nombres réels. Cette dernière écriture s'appelle la forme canonique de f. avec α = − b 2a et β = − b2 − 4ac 4a .
La forme (1) est dite forme développée : elle permet de reconnaître que f(x) est de la forme ax2 + bx + c. La forme (2) est dite forme canonique : elle permet de montrer que f admet 5 comme maximum sur ℝ, atteint pour x = 1.
Représentation graphique
La fonction cube est une fonction impaire, ainsi pour tout x réel on a : f ( − x ) = − f ( x ) f(-x)=-f(x) f(−x)=−f(x).
Une figure de style est un procédé d'expression qui s'écarte de l'usage ordinaire de la langue et donne une expressivité particulière et un caractère figuré au propos.
Équation paramétrique.
Pour une hyperbole dont les axes sont parallèles aux axes du repère, on peut paramétrer l'ellipse par : x = a / cos(t) et y = b. tan(t) avec t ∈[0, 2π[.
La conique C a pour équation cartésienne x2 + y2 = e2(x − h)2 et pour équation polaire, au choix, l'une des deux suivantes : ρ = eh ecosθ + 1 ou ρ = eh ecosθ − 1 . Démonstration. Soit M = (x, y) un point du plan.
Tracer la courbe représentative d'une fonctionMéthode
La courbe représentative d'une fonction f est l'ensemble des points M(x;y) tels que f(x)=y et x∈Df. On peut en tracer une allure si l'on connaît une expression de la fonction. On considère la fonction f définie, pour tout réel x, par f\left(x\right) = 2x^2-x+1.
La représentation graphique d'une fonction du second degré est une parabole qui possède un axe de symétrie parallèle à l'axe des ordonnées. Le signe du nombre a indique le sens de variation de la fonction.
Zéro est considéré à la fois comme un chiffre positif et négatif. L'opposé de "0" (positif) est "0" (négatif). L'opposé de "0" (négatif) est "0" (positif). Sur une droite graduée, 2 nombres opposés sont à égale distance de 0.
Par exemple : l'opposé de 7 est égal à -7 car 7 + (-7) = 0. l'opposé de -0,3 est 0,3 car -0,3 + 0,3 = 0.
Exemples. L'élément opposé de 8 est –8, car : 8 + (–8) = 0.
Re : L'inverse de x²
Maintenant c'est clair la réponse était bien évidemment 3x-² ^^.
La fonction f =1/u est la composée de deux fonctions la fonction u suivie de la fonction inverse. La fonction inverse est définie et dérivable sur chaque intervalle ]-∞ ;0[ et ]0 ;+∞[ , donc la fonction composée f est définie et dérivable sur les intervalles ou la fonction u est dérivable et non nulle.