coordonnées d'un point Dans un repère du plan, on a besoin de deux nombres pour indiquer la position d'un point : ce sont ses coordonnées. La première coordonnée, l' abscisse, se lit sur l'axe horizontal (l'axe des abscisses) ; la seconde, l' ordonnée, se lit sur l'axe vertical (l'axe des ordonnées).
Pour lire les coordonnées d'un point M dans un repère, on commence par tracer la parallèle à chacun des axes passant par M. On lit la valeur de l'abscisse du point M à l'intersection entre l'axe des abscisses et la parallèle à l'axe des ordonnées.
Pour indiquer les coordonnées du vecteur , on utilise la notation ou . On considère deux points A(xA ; yA) et B(xB ; yB). Le vecteur a pour coordonnées (xB – xA ; yB – yA ).
Pour trouver son abscisse, on trace une parallèle à l'axe des ordonnées ; on lit alors l'abscisse du point à l' intersection avec l'axe horizontal. Pour trouver son ordonnée, on trace une parallèle à l'axe des abscisses ; on lit alors l'ordonnée du point à l' intersection avec l'axe vertical.
Un petit moyen mnémotechnique pour ne pas confondre abscisse et ordonnée: Ecrite en script, l'initiale de abscisse se prolonge sur l'horizontale. "Abscisse" désigne donc l'axe horizontal d'un repère. La boucle du o se prolonge verticalement, "ordonnée" désigne donc l'axe vertical d'un repère.
ORDONNÉE, subst. fém. A. − Coordonnée verticale servant à définir la position d'un point soit avec l'abscisse en géométrie analytique à deux dimensions, soit avec l'abscisse et la cote dans un système à trois dimensions.
Calculer l'ordonnée du point M de la droite (D) connaissant son abscisse. Taper les nombres décimaux avec un point et non une virgule, exemple : taper 0.65 au lieu de 0,65 (indiquer le 0 avant le point). Ne pas laisser d'espace vide entre les caractères.
Les données sont définies dans des systèmes de coordonnées horizontales et verticales. Les systèmes de coordonnées horizontales localisent les données sur la surface de la Terre, et les systèmes de coordonnées verticales les localisent par rapport à la hauteur ou la profondeur des données.
Le point étant considéré comme l'unique élément commun à deux droites sécantes, on représente habituellement le point par une croix (intersection de deux petits segments) plutôt que par le glyphe du même nom.
Par convention les coordonnées géographiques s'écrivent ainsi : 45° 45′ 35″ nord, 4° 50′ 32″ est. Dans cet exemple, il faut lire « quarante-cinq degrés, quarante-cinq minutes, et trente-cinq secondes de latitude nord, et quatre degrés, cinquante minutes et trente-deux secondes de longitude est. »
Point de repère,
toute marque employée pour reconnaître un lieu ou l'ordre dans lequel on doit assembler des pièces séparées ; point déterminé qui permet de s'orienter ; indice qui permet de situer un événement dans le temps.
x(AB*)=x(B)-x(A) c'est à dire l'abscisse du point B moins l'abscisse du point A. y(AB*)=y(B)-y(A) c'est à dire l'ordonnée du point B moins l'ordonnée du point A. Remarque : Les coordonnées du vecteur AB* représentent le chemin horizontal et vertical qui permet d'aller du point A au point B.
Pour se repérer dans l'espace, on utilise un repère orthogonal composé d'une origine O et de trois axes où chacun est perpendiculaire aux deux autres. Un point A de l'espace a trois coordonnées : son abscisse a, son ordonnée b et son altitude c.
Un repère de l'espace est constitué de 3 axes : celui des abscisses, celui des ordonnées et celui des cotes. Les coordonnées d'un point de l'espace sont constituées de 3 nombres : l'abscisse, l'ordonnée et la cote de ce point, lisibles sur les axes du même nom.
À titre d'exemple, Baltimore (aux États-Unis) a une latitude de 39,28° nord et une longitude de 76,60° ouest (39° 17′ N, 76° 36′ O). Les coordonnées géographiques sont traditionnellement exprimées dans le système sexagésimal, parfois noté « DMS » : degrés ( ° ) minutes ( ′ ) secondes ( ″ ).
Un système de coordonnées est un système utilisé pour mesurer des coordonnées. Il peut être défini par un ellipsoïde. Un point sera alors localisé par ses coordonnées géographiques, exprimées par la latitude Ф, la longitude λ, et la hauteur ellipsoïdale h mesurée suivant la normale à l'ellipsoïde.
Lambert 93
La projection Lambert93 (projection officielle pour les cartes de France métropolitaine depuis le décret 2000-1276 du 26 décembre 2000 [archive]) est la projection liée au système géodésique RGF93.
On peut déterminer ses nouvelles coordonnées en commençant par tracer deux segments parallèles aux axes des abscisses et des ordonnées passant par le point 𝐶. D'après la définition du repère 𝐴 ; 𝑂, 𝐵, la longueur du segment 𝑂𝐴 est d'une unité sur l'axe des abscisses. Les coordonnées du point 𝐴 sont donc un, zéro.
Commence par tracer une droite horizontale orientée vers la droite. Place un petit trait au milieu de la droite, il s'agit de l'origine du repère. L'axe des abscisses est une droite horizontale orientée vers la droite.
Un plan cartésien se compose de plusieurs caractéristiques : Le plan cartésien est d'abord défini par 2 axes perpendiculaires: l'axe des abscisses (les x ) qui est horizontal et l'axe des ordonnées (les y ) qui est vertical. Les deux axes se croisent à l'origine, c'est-à-dire au point (0,0) .
Une équation de droite se présente sous la forme : y = ax + b avec a le coefficient directeur et b l'ordonnée à l'origine. Ici b = 0, car la droite coupe l'axe des ordonnées au point 0. Pour déterminer a, il suffit de se placer sur le point correspondant à l'ordonnée à l'origine (b).
ordonnée n.f. ordonner v.t. Commander quelque chose (à quelqu'un), donner tel ordre.
Sur une droite graduée, chaque point est repéré par un nombre relatif. On dit que ce nombre est l'abscisse de ce point. Exemple 1 : L'abscisse de A est (-2), on le note A(-2).