Pour déterminer le sens de variation d'une fonction sur un intervalle I, on peut comparer les valeurs de f(a) et f(b) où a et b sont deux réels de l'intervalle I vérifiant a<b.
Sens de variation d'une fonction affine
Propriété : Si a est positif, la fonction affine x → ax + b est croissante sur . Si a est négatif, la fonction affine x → ax + b est décroissante sur .
En mathématiques, les variations d'une fonction réelle d'une variable réelle sont le caractère croissant ou décroissant des restrictions de cette fonction aux intervalles sur lesquels elle est monotone.
On dira qu'une fonction f(x) est positive sur un intervalle donné en x si, sur cet intervalle, les valeurs de f(x) sont supérieures ou égales à 0 (positives). On dira qu'une fonction f(x) est négative sur un intervalle donné en x si, sur cet intervalle, les valeurs de f(x) sont inférieures ou égales à 0 (négatives).
Partie 1 : Fonctions croissantes et fonctions décroissantes
Lorsqu'on se promène sur la courbe en allant de la gauche vers la droite : Sur l'intervalle [0 ; 2,5], on monte, on dit que la fonction est croissante. Sur l'intervalle [2,5 ; 5], on descend, on dit que la fonction est décroissante.
Pour cela, dans le cas général, il faut d'abord calculer le discriminant Δ (delta), donné par la formule : Δ = b² - 4ac.
La courbe en cloche ou courbe de Gauss est l'une des courbes mathématiques les plus célèbres. On la voit apparaître dans un grand nombre de situations concrètes — en statistiques et en probabilités — et on lui fait souvent dire tout et n'importe quoi.
La représentation graphique d'une fonction linéaire est une droite passant par l'origine du repère. La représentation graphique d'une fonction affine est une droite passant par le point de coordonnées (0 ; b). Vocabulaire : a est appelé le coefficient directeur de la droite.
On peut retenir l'ordre des signes grâce au raisonnement suivant : si le coefficient directeur a est positif, la fonction est croissante donc d'abord négative puis positive. si le coefficient directeur a est négatif, la fonction est décroissante donc d'abord positive puis négative.
La dérivée d'une fonction permet : De calculer le coefficient directeur et donc l'équation d'une tangente. De déterminer, avant de faire un graphique, les intervalles où la fonction est croissante ou décroissante.
La forme ax2 + bx + c est appelée la forme développée de f. On admet que cette forme est unique. Soit a, b et c, trois réels où a ≠ 0. Cette forme est appelée la forme canonique du polynôme.
Sur chacun des intervalles, il suffit de calculer une valeur de f ′ ( x ) f'(x) f′(x)f, prime, left parenthesis, x, right parenthesis pour connaître le signe de f′ sur l'intervalle. f est décroissante si x < 0 x<0 x<0x, is less than, 0 et si x > 0 x>0 x>0x, is greater than, 0, donc f est aussi décroissante en 0.
Pour déterminer un antécédent d'un nombre à l'aide d'une formule, il faut remplacer f ( x ) f(x) f(x) par la valeur du nombre dans la formule puis trouver une valeur de x qui la vérifie.
La correspondance qui à tout nombre positif fait correspondre les deux nombres dont il est le carré n'est pas une fonction. En effet, il n'y a pas unicité. Par exemple 4 est le carré de 2 et - 2. L'ensemble de définition d'une fonction est l'ensemble des nombres réels pour lesquels on peut calculer une unique image.
On trace une droite horizontale à partir de la valeur de l'image dont on cherche l'antécédent. On note toutes les intersections entre cette droite et le graphe de f. En chaque intersection, on trace une droite verticale et on lit la valeur de l'intersection avec l'axe des abscisses.
Pour calculer l'image d'un nombre par une fonction f [f : x → f(x)], il faut tout simplement remplacer x par la valeur de ce nombre.
Pour déterminer le sens de variation d'une fonction f , on étudie le signe de sa dérivée : f ′ ( x ) . Pour interpréter ce signe : Si f ′ ( x ) a le signe + sur un intervalle, alors f est croissante sur cet intervalle. Si f ′ ( x ) a le signe - sur un intervalle, alors f est décroissante sur cet intervalle.
Tracer la courbe représentative d'une fonctionMéthode
La courbe représentative d'une fonction f est l'ensemble des points M(x;y) tels que f(x)=y et x∈Df. On peut en tracer une allure si l'on connaît une expression de la fonction. On considère la fonction f définie, pour tout réel x, par f\left(x\right) = 2x^2-x+1.