La fonction logarithme décimale se note comme suit : log(x) = ln(x)/ln(10). Ses propriétés algébriques sont similaires à celles du logarithme népérien, noté lui, "ln". Pour tout x > 0 et pour tout y ∈ R, log(x) = y <=> x = 10y ou encore log(10y) = y.
Pour tous nombres réels a et b strictement positifs, on a : ln(ab) = ln(a) + ln(b). Exemple : ln6 = ln(2 × 3) = ln2 + ln3.
Exemple d'un calcul d'un logarithme
On se pose la question : 100 est 10 puissance combien ? En d'autres termes, on doit résoudre l'équation suivante : 10 x = 100. Le résultat de l'équation est x = 2, car 10 2 = 100. Par conséquent, le résultat de log 10(100) = 2.
On exprime la variable initiale en fonction de la nouvelle variable : x = e^X. Ainsi, pour chaque solution X_i, liée à la nouvelle variable, on détermine la solution correspondante liée à la variable initiale : x_i = e^{X_i}. On a X_1 = -4 et X_2 = 2. On procède au changement de variable inverse en posant x = e^X.
La fonction ainsi définie (appelée logarithme décimal ou logarithme vulgaire, et notée log ou log10) permet de transcrire le tableau précédent de la manière suivante : log (1) = log (100) = 0 log (10) = log (101) = 1 log (100) = log (102) = 2 log (1000) = log (103) = 3 …
La fonction qui à tout nombre x strictement positif associe log x est appelée fonction logarithme décimal. Pour trouver des valeurs, il faudra utiliser la touche log de votre calculatrice. Sachant que log 2 ≈ 0,301, calculer log 5. Comme 10 = 2×5 alors log 10 = log(2×5).
Les logarithmes des puissances entières de 10 se calculent aisément en utilisant la règle de conversion d'un produit en somme : log(10) = 1, log(100) = log(10 * 10) = log(10) + log(10) = 2, log(1000) = 3, log(10n) = n.
La fonction logarithme permet de remplacer une multiplication par une addition, ou une division par une soustraction. Avant l'avènement des calculettes, la règle à calculer permettait de faire des multiplications ou des divisions, en additionnant ou en soustrayant des longueurs, proportionnelles à des logarithmes.
La fonction logarithme décimal transforme un produit en une somme, cela va permettre de simplifier les calculs.
La fonction inverse du logarithme est l'exponentielle. Par exemple pour le logarithme naturel ou népérien généralement noté ln(x), on a e ^ ln(x) = x ou pour le logarithme en base 10, on a 10 ^ logdécimal(x) = x. Vous pouvez facilement le vérifier sur une calculatrice scientifique.
Le logarithme décimal ou log10 ou simplement log (parfois appelé logarithme vulgaire) est le logarithme de base dix. Il est défini pour tout réel strictement positif x. Le logarithme décimal est la fonction continue qui transforme un produit en somme et qui vaut 1 en 10.
L'inconnue réelle t est notée ln(x). Autrement dit, pour tout réel x strictement positif, la fonction ln est la fonction qui vérifie l'égalité : eln(x) = x. La fonction ln est la fonction réciproque de la fonction exp (à l'image de la fonction racine carrée pour la fonction carré). (P3) : ln(1) = 0 et ln(e) = 1.
Exemple : Le logarithme en base 10 de 1000 est 3 car 103 = 10×10×10 = 1000. Dans ce cas, le plus simple, le logarithme est le nombre entier qui compte les répétitions de la base multipliée par elle-même. Dans cette opération, multiplier un nombre par la base équivaut à ajouter 1 à son logarithme.
Utilisez – [Analyse fonction] > [LN] pour saisir « ln ».
Pour la tâche (T5), les auteurs expliquent que la mantisse du logarithme décimal de x désigne la différence entre le logarithme de ce nombre x et la partie entière de ce logarithme, c'est-à-dire sa partie fractionnaire. La mantisse est le réel log(x) - c, où c est la caractéristique de log(x).
Le logarithme naturel ou népérien est dit de base e car ln(e) = 1. Le logarithme népérien d'un nombre x peut également être défini comme la puissance à laquelle il faut élever e pour obtenir x. La fonction logarithme népérien est donc la bijection réciproque de la fonction exponentielle.
Afin de résoudre une inéquation du type \ln\left(u\left(x\right)\right) \geq k, on applique la fonction exponentielle des deux côtés pour faire disparaître le logarithme.
Quelle est la différence entre log et ln ? log est employé lorsque la base est 10 et ln est utilisé lorsque la base est e.
Le logarithme est très couramment utilisé en Physique-Chimie, car il permet de manipuler et de considérer des nombres possédant des ordres de grandeur très différents, notamment grâce à l'emploi d'échelles logarithmiques.
L'histoire de la naissance des logarithmes et des exponentielles traverse le XVII e siècle. Elle commence par la création de tables de logarithmes permettant de faciliter les calculs astronomiques, se poursuit par les tentatives de calcul d'aire sous l'hyperbole.
Le logarithme donne une échelle de proportionnalité, il donne une échelle linéaire pour des proportions, par exemple une puissance sonore multipliée par 2 correspond à +3 db, l'échelle sonore des décibels est une échelle logarithmique qui correspond à 10 db par une multiplication par 10 de la puissance.
L'antilog est l'inverse du logarithme en base 10. Vous pouvez utiliser l'antilog pour calculer les valeurs initiales des données précédemment transformées à l'aide du log en base 10. Par exemple, si la valeur initiale d'une donnée est 18,349, le log en base 10 de 18,349 ≈ 4,2636124.