Il est possible de tracer la réciproque d'une fonction en interchangeant les coordonnées x et y de certains points. Par exemple, dans la figure ci-dessous, on peut observer la fonction f(x)=25(x+1)+2 f ( x ) = 2 5 ( x + 1 ) + 2 et sa réciproque : f−1(x)=25(x−2)−1.
Deux fonctions et sont réciproques l'une de l'autre équivaut à : quel que soit , si l'image de par la fonction est , alors l'image de par la fonction est . La notation de la réciproque de est . Par définition, f ( a ) = b ⟺ f − 1 ( b ) = a .
1 t dt. L'application réciproque de ln est la fonction exponentielle c'est-à-dire ∀x ∈ R, ∀y ∈]0, +∞[, exp(x) = y ⇐⇒ x = ln y.
Afin de trouver la règle de la fonction réciproque de f, il suffit de poser x=f(y) et d'isoler la variable y. Déterminons si la fonction f(x)=(x−1)3+2 est injective.
La réciproque du théorème de Pythagore
Si dans un triangle ABC, on a BC^2=AB^2+AC^2, alors le triangle ABC est rectangle en A.
Le théorème de Pythagore établit une relation entre les longueurs des côtés d'un triangle rectangle, tandis que sa réciproque permet de déterminer si un triangle est rectangle en vérifiant cette relation.
Théorème de Pythagore — Dans un triangle rectangle, le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés.
La réciproque du théorème de Thalès sert à montrer que deux droites sont parallèles.
Dans ce cas, ima(f)=[k,+∞[=dom(f−1). ima ( f ) = [ k , + ∞ [ = dom ( f − 1 ) . Si la fonction valeur absolue est ouverte vers le bas (lorsque a est négatif), l'ouverture de sa réciproque est vers la droite. Dans ce cas, ima(f)=]−∞,k]=dom(f−1).
Une fonction admet une réciproque si et seulement si sa courbe représentative a un seul point d'intersection avec une parallèle à l'axe des abscisses.
Réciproque du théorème de Thalès : Si, d'une part les points A,D,C et d'autre part les points A,E,B sont alignés dans le même ordre et si les deux premiers rapports de Thalès sont égaux ( A D A C = A E A B ) alors les droites (DE) et (BC) sont parallèles.
RÉCIPROQUE, adj. et subst. (Ce) qui s'exerce entre deux (groupes de) personnes, (d') objets ou (d') éléments quelconques, l'action exercée et l'action reçue étant équivalentes.
La réciproque du théorème Pythagore dit que « si un triangle est rectangle, alors le carré de la plus grande longueur (l'hypoténuse) est égale à la somme des carrés des longueurs des deux autres côtés ». La réciproque de Pythagore permet donc de montrer si un triangle est rectangle.
Exemple : Leur salut était réciproque. Relatif aux verbes pronominaux qui expriment une action que réalisent les sujets les uns sur les autres.
La bijection réciproque est donnée par f−1(y)=y f − 1 ( y ) = y .
La réciproque d'une fonction est une fonction qui « inverse » cette fonction. Si 𝑓 ( 𝑥 ) = 𝑦 , alors la réciproque de 𝑓 , que nous désignons par 𝑓 , renvoie la valeur initiale de 𝑥 lorsqu'on l'applique à 𝑦 .
Pour tout nombre réel n, la valeur absolue de n est la distance entre 0 et n, elle est donc égale à la valeur absolue de -n. Pour résoudre une équation contenant des valeurs absolues comme par exemple | x - 5| = 10, on doit donc résoudre l'équation x - 5 = 10 mais aussi l'équation - ( x - 5 ) = 9.
Lorsqu'on cherche la règle d'une fonction valeur absolue, 3 cas sont possibles. Dans tous les cas, on utilise la forme canonique simplifiée : f(x)=a|x−h|+k.
Quand on coupe deux droites sécantes au point A par deux droites parallèles (MN) et (BC), on obtient deux triangles ABC et AMN. Le théorème de Thalès énonce que, dans ce type de configuration, les longueurs des côtés d'un triangle sont proportionnels aux côtés associés de l'autre triangle.
Théorème de Thalès (appliqué au triangle)
D'après le théorème de Thalès, si les droites (BC) et (MN) sont parallèles, alors on a l'égalité : \frac{AM}{AB} = \frac{AN}{AC} =\frac{MN}{BC}.
En utilisant le théorème de Pythagore : Si un triangle est rectangle, alors le carré de l'hypoténuse est égal à la somme des carrés des côtés de l'angle droit. Si ABC est un triangle rectangle en A, alors BC² = AB² + AC².
Théorème de Pythagore :
Si un triangle est rectangle , alors le carré de la longueur de son hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Exemple 1 : Soit le triangle ABC rectangle en A ([BC] est donc l'hypoténuse), alors BC²=AC²+BA².
Connaissant la longueur de [ A B ] [AB] [AB] et [ A C ] [AC] [AC], il est possible d'utiliser le théorème de Pythagore afin de déterminer la longueur de [ B C ] [BC] [BC].
On rédigera : On sait que le triangle ABC est rectangle en A, AB = 3cm, BC = 5cm. Donc, d'après la propriété de Pythagore, BC2 = AB2 + AC2. Il vient : 52 = 32 + AC2 25 = 9 + AC2 AC2 = 25 – 9 AC2 = 16 AC = 4 Attention à ne pas oublier cette étape ! Donc AC = 4cm.
Calculer la longueur d'un côté avec le théorème de Pythagore
Si un triangle est rectangle, alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux côtés de l'angle droit.