Pour déterminer un antécédent d'un nombre à l'aide d'une formule, il faut remplacer f ( x ) f(x) f(x) par la valeur du nombre dans la formule puis trouver une valeur de x qui la vérifie.
On dit que l'image de 5 par la fonction f est 25. Cette image est unique. L'image de 5 par la fonction f se note f(5). On dit aussi que 5 est un antécédent de 25 par la fonction f.
Le seul antécédent de 4 par f est -2.
On cherche le ou les antécédents du nombre 2. on repère le nombre 2 sur l'axe des ordonnées et on dessine un chemin horizontal jusqu'à la courbe. on poursuit ensuite le chemin verticalement jusqu'à l'axe des abscisses et on lit le nombre cherché.
L'antécédent de 3 par f est 1. L'antécédent de 3 par f est 3. L'antécédent de 3 par f est 0. L'antécédent de 3 par f est 6.
Pour lire les antécédents, la marche à suivre est la suivante: On trace une droite horizontale à partir de la valeur de l'image dont on cherche l'antécédent. On note toutes les intersections entre cette droite et le graphe de f.
Dans une fonction, l'antécédent est le nombre x qui sert de base au calcul de l'image y par la fonction f.
Un antécédent d'un nombre y par une fonction f est un nombre x dont l'image f par est égale à y. C'est-à-dire tel que y = f(x).
Principe. Pour calculer l'image de f (par exemple), c'est à dir calculer f(2), on remplace x par 2 dasn l'expression de f(x), tout simplement.
Dans l'alphabet, on a dans l'ordre : x, y et z. y est après x, c'est l'image de x. x est avant y, c'est l'antécédent de y.
Les antécédents de 1 sont 1 et -1. L'antécédent de 0 est 0. -1 n'admet pas d'antécédent car l'équation x² = -1 n'admet pas de solution (et oui un carré est TOUJOURS positif !)
7 a pour antécédent – 2 par la fonction f .
Réponse. Réponse: dans f(x)=28, x est l'antécédent.il peut y en avoir un ou plusieurs.
Pour déterminer l'image de 2 par f, on doit partir de l'abscisse 2, puis on lit l'ordonnée du point de la courbe correspondant. Par lecture, on obtient -3,5. Donc l'image de 2 par f est -3,5. Pour obtenir les antécédents d'un nombre b, on lit les abscisses des points de la courbe ayant pour ordonnée b.
Pour calculer l'image d'un nombre par une fonction f [f : x → f(x)], il faut tout simplement remplacer x par la valeur de ce nombre.
2 a donc deux antécédents qui sont 1 et 4.
Pour lire graphiquement f '(0), on lit le coefficient directeur de la tangente en B. Pour cela, on peut : lire les coordonnées d'un autre point C de la droite et calculer le coefficient directeur . Ainsi, f '(0) = –1,5.
Exemple : Calculer l'image de 2 par la fonction affine f(x)=3x+1 f ( x ) = 3 x + 1 c'est calculer 3×2+1=7 3 × 2 + 1 = 7 . Donc l'image de 2 par f est f(2)=7 f ( 2 ) = 7 .
antécédent
Élément qui précède et auquel se rapporte un pronom relatif (par exemple homme dans l'homme dont je parle).
Soit f une fonction définie sur un intervalle D. On appelle image de x par f le nombre f(x). On appelle antécédent de y le nombre x telle que f(x) = y.
Exemples. et y un nombre réel. Si y = 0 alors y admet un seul antécédent, qui est 0. Si y < 0 alors y n'admet aucun antécédent.
À retenir L'image d'un nombre placé sur l'axe de abscisses se lit sur l'axe des ordonnées. Pour lire un antécédent de 1 : on place 1 sur l'axe des ordonnées, on regarde le point de la courbe qui a pour ordonnée 1 (ici c'est N ), un antécédent de 1 est l'abscisse du point N c'est à dire – 4 .
Il s'agit en fait de calculer la valeur prise f(x) lorsque x = 4. Il s'agit donc de remplacer x par 4 dans l'expression de f. L'image de 4 par la fonction f est donc égal à -20.