P : Si deux angles correspondants déterminés par deux droites et une sécante ont la même mesure, alors ces deux droites sont parallèles. P : Si deux angles alternes-internes déterminés par deux droites et une sécante ont la même mesure, alors ces deux droites sont parallèles.
Si deux droites parallèles coupées par une sécante forment deux angles alternes-internes, alors ces angles sont de même mesure. La réciproque à cette règle est également vraie : Si deux angles alternes-internes de même mesure sont définis par deux droites et une sécante, alors ces deux droites sont parallèles.
Deux droites (AB) et (CD) sont parallèles lorsque les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires.
Propriété : Si deux droites sont perpendiculaires à une même droite, alors elles sont parallèles.
Si deux droites sont parallèles à une même droite, alors elles sont parallèles entre elles. Si deux droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles. Si deux droites sont parallèles, toute perpendiculaire à l'une est alors perpendiculaire à l'autre.
Si deux droites sont perpendiculaires à une même troisième, alors elles sont parallèles. Cette propriété permet de construire deux droites parallèles.
AB AM = AC AN = BC MN . deuxième quotient, les lettres A,CetN correspondent aux points de la deuxième sécante ; et dans le dernier quotient, on retrouve les lettres qui correspondent aux deux parallèles. Repérer les différentes configuration de Thalès et donner les égalités de quotients.
Si deux droites forment avec une sécante des angles correspondants égaux, alors ces droites sont parallèles. Si deux droites forment avec une sécante des angles alternes-internes égaux, alors ces deux droites sont parallèles.
Définition: Définition : Deux droites distinctes sont dites parallèles si elles n'ont aucun point en commun. Les droites (d1) et (d2) sont parallèles. Remarque : Deux droites qui ne sont pas parallèles sont sécantes.
La réciproque du théorème de Thalès permet de dire que deux droites sont parallèles lorsqu'on connaît des rapports de longueurs. d'après la réciproque du théorème de Thalès, les droites (XY) et (WZ) sont parallèles.
Si deux droites sont parallèles, toute perpendiculaire à l'une est perpendiculaire à l'autre. Donc (BC) et ( DC|CD) sont perpendiculaires. D'après l'énoncé, la droite (BC) est perpendiculaire à la droite (AB) et la droite (DC) est parallèle à la droite (AB). Les droites (BC) et (DC) sont donc perpendiculaires.
Deux droites sont toujours soit sécantes, soit parallèles. Si deux droites sont sécantes et qu'elles forment un angle droit, alors elles sont perpendiculaires. Si deux droites sont parallèles, elles ne se couperont jamais, même si on les prolonge indéfiniment.
Les parallèles qui ne se coupent pas, c'est de la géométrie euclidienne. C'est la géométrie plane que l'on apprend à l'école, et qui dit par exemple, que si on a une droite et un point extérieur à cette droite, alors il passe par ce point une droite (et une seule) parallèle à la droite de départ.
(Géométrie) Angle de valeur égale à 180 degrés ou de 1/2 de tour.
Les angles complémentaires sont des angles dont la somme des mesures est égale à 90°. Lorsque la somme des mesures de deux angles a une valeur de 90°, on qualifie ces angles de complémentaires.
Si deux angles sont opposés par le sommet, alors ils sont égaux. Si deux angles alternes internes (ou correspondants) sont formés par deux droites parallèles et une sécante, alors ils sont égaux. Si un triangle est isocèle, alors ses angles à la base sont égaux.
Avec la reciproque de Thalès on peut savoir si les deux droites sont parallèles. Mais seulement si les cotes des triangles sont proportinnels deux a deux. Pythagore ce n'est qu'avec un triangle rectangle, il sert a connaitre la mesure d'un côté.
Un parallèle est un cercle imaginaire. Sa longueur est donc la circonférence du cercle, dont la formule générale à connaître est : l=2πr, avec r le rayon.
Conclusion : Le théorème de Pythagore s'applique au triangle rectangle seulement et permet de calculer un côté de celui-ci lorsque l'on connaît les deux autres.
Les droites sécantes
Des droites sécantes sont des droites qui se croisent en un seul point. On qualifie de point d'intersection le point de rencontre entre deux droites ou plus.
La réciproque du théorème de Pythagore : Si dans un triangle, le carré de la longueur du plus grand côté est égal à la somme des carrés des longueurs des autres côtés alors ce triangle est rectangle et l'angle droit est l'angle opposé au plus grand côté.
Quand on trace deux droites dans le plan, trois cas sont possibles. Les deux droites se coupent en un point O ; on dit qu'elles sont sécantes en O. (d) et (d') sont sécantes en O. Les deux droites ont une infinité de points communs ; on dit qu'elles sont confondues.
Deux droites distinctes sont parallèles si elles n'ont aucun point commun même si on les prolonge. Deux droites sont perpendiculaires si elles se coupent en formant un angle droit.
Comment démontrer que deux droites sont perpendiculaires ? Si deux droites forment un angle droit, alors elles sont perpendiculaires. Si deux droites sont parallèles, alors toute droite perpendiculaire à l'une est perpendiculaire à l'autre.
Quand deux droites se coupent en formant un angle droit, elles sont perpendiculaires.