Le quartile inférieur, ou premier quartile (Q1), est la valeur au-dessous de laquelle se trouvent 25 % des données lorsqu'elles sont arrangées en ordre croissant. Le quartile supérieur, ou troisième quartile (Q3), est la valeur au-dessous de laquelle se trouvent 75 % des données arrangées en ordre croissant.
Le premier quartile Q1 est la plus petite valeur de la série telle qu'au moins 25% des valeurs sont inférieures ou égales à Q1. Le troisième quartile Q3 est la plus petite valeur de la série telle qu'au moins 75% des valeurs sont inférieures ou égales à Q3.
Calculons le premier quartile Q1 : 99 ÷ 4 = 24,75 l'entier immédiatement supérieur est égal à 25. Le premier quartile Q1 est au rang 25. Additionnons les effectifs jusqu'à dépasser 25 : 10 + 25 = 35 d'où le premier quartile est à : Q1 = 1450.
1- Je compte le nombre de données avant Q2. On va dire qu'il y en a 9. Est-ce que je fais 9+1/2 = Q1 se trouve au 5e rang OU Q1 se trouve entre le 5e et le 6e rang. Et puis s'il y a 10 données avant Q2 par exemple.
Si on ordonne une distribution de salaires, de revenus, de chiffre d'affaires..., les quartiles sont les valeurs qui partagent cette distribution en quatre parties égales.
On peut utiliser un tableau et cumuler les effectifs pour chercher la médiane et les quartiles. N=20; la moitié est N/2=10; la médiane est une valeur comprise entre la 10e et la 11e valeur soit comprise entre 38 et 39. Le premier quartile est 36 et le troisième est 39.
Les quartiles
Méthode : Pour Q1, on calcule N/4, puis on détermine le premier entier p supérieur ou égal à N/4. Cet entier p est le rang de Q1. Pour Q3, on fait de même avec 3N/4 Exemple : Pour N=15, on a N/4=3,75 et 3N/4 = 11,25. Donc Q1 est la quatrième valeur de la série et Q3 est la douzième valeur.
La formule Excel pour calculer les quartiles
On va utiliser tout simplement la fonction QUARTILE qui prend comme paramètre d'abord la série de données et le numéro du quart. Donc si on veut le 1er quartile avec 25% des valeurs, on choisit 1,on peut choisir 2 pour la moitié, et 3 pour le 3e quartile.
Sur l'axe des ordonnées, on repère la fréquence cumulée croissante 50%. On rejoint horizontalement la courbe et on redescend verticalement sur l'axe des abscisses pour déterminer la valeur de la médiane.
- Un indicateur de dispersion : la longueur de l'intervalle interquartile qui contient la moitié centrale des valeurs de la série. Plus l'écart interquartile est petit, plus les valeurs centrales de la série se concentrent autour de la médiane. Il est facile à interpréter.
Dans un jeu de données de petite taille, il suffit de compter le nombre de valeurs (n) et de les ordonner en ordre croissant. Si le nombre de valeurs est un nombre impair, il faut lui additionner 1, puis le diviser par 2 pour obtenir le rang qui correspondra à la médiane.
Calcul des quantiles
Soit N le nombre de valeurs observées de la population échantillonnée, et soit x1, x2, ..., xN les valeurs ordonnées de la même population, telles que x1 est la plus petite valeur, etc. Pour le k-ième q-quantile, on a p = k⁄ q.
Faire des statistiques c'est : Dénombrer ou recenser : compter de manière exhaustive, sur toute la population répondant à un ou des critères bien définis. Sonder : grâce aux techniques de la probabilité, c'est à dire qu'on n'étudie qu'un échantillon de la population et on en déduit des propriétés générales.
Statistiques pour décrire une variable quantitative
La description d'une variable quantitative se base sur les statistiques suivantes : la moyenne, la médiane, la variance, l'écart-type, les quantiles. On peut aller plus loin en regardant l'asymétrie et l'aplatissement.
Pour calculer la médiane : On classe les valeurs de la série statistique dans l'ordre croissant : Si le nombre de valeurs est impair, la médiane est la valeur du milieu. S'il est pair, la médiane est la demi-somme des deux valeurs du milieu.
Comment calculer la médiane ? (Effectif Total Pair)
Après avoir ranger les valeurs dans l'ordre croissant, la médiane , est la demi-somme des valeurs de rang N / 2 et (N / 2) +1. (Demi somme de 2 et 3 est : (2 + 3) / 2 = 5/2 = 2,5).
Par exemple pour calculer le premier quartile on utilise la formule : =QUARTILE(votre_plage:de_données;1). Le résultat du premier quartile est 484.
Contrairement à l'étendue et à l'écart interquartile, la variance est une mesure qui permet de tenir compte de la dispersion de toutes les valeurs d'un ensemble de données. C'est la mesure de dispersion la plus couramment utilisée, de même que l'écart-type, qui correspond à la racine carrée de la variance.
Les quartiles sont les trois valeurs seuils qui permettent de diviser une série statistique en quatre groupes ayant le même nombre d'observations. Les quartiles sont généralement utilisés pour mesurer les écarts entre les différentes valeurs seuils comme c'est le cas pour l'étude des inégalités.
- Le premier quartile (noté Q1) est la valeur d'une série qui est supérieure ou égale à au moins 25 % des données de la série ordonnée de valeurs statistiques.
Les fréquences sont souvent données en pourcentage : on multiplie alors chaque résultat par 100. Ainsi : 0,26 × 100 = 26. 26 % des familles de la cité possèdent 2 engins motorisés. La somme des fréquences en pourcentage est égale à 100.
La boîte à moustaches, parfois appelée diagramme en boîte ou diagramme de quartiles, est un type de diagramme qui permet de visualiser le résumé en cinq nombres.