Une équation cartésienne de droite est de la forme ax+by+c=0. On peut déterminer une équation cartésienne de la droite \left(d\right) lorsque l'on connaît un point de la droite et un vecteur directeur de la droite.
L'équation cartésienne d'une droite est de la forme ax + by + c = 0 avec a, b et c ∈ℝ et au moins l'un des nombres a et b non nul.
Si la droite (D) passe par deux points A(xA;yA) et B(xB;yB) et si xA est différent de xB, alors, on peut calculer le coefficient directeur de (D): a=(yB-yA)/(xB-xA). Soit (D) : ax+by+c=0 [Lire: la droite (D) d'équation cartésienne ax+by+c=0].
L'équation cartésienne d'un plan est du type ax + by + cz + d = 0 avec (a ;b ;c) les coordonnées d'un vecteur normal du plan . On procède en deux étapes : D'abord déterminer un vecteur normal au plan Ensuite déterminer d . une valeur pour cette variable et on en déduit les deux autres .
Pour passer d'une équation cartésienne à une équation paramétrique d'un plan, on exprime une variable en fonction des 2 autres qu'on appelle t et t′. Pour passer d'une équation paramétrique à une équation cartésienne d'un plan, on fait disparaitre les t et les t′ de la paramétrisation par des combinaisons.
Méthode utilisant l'appartenance des trois points A, B et C
donc : -3a + b + c + d = 0. Exprimons les variables a, b, c et d en fonction d'une par exemple a : on "retombe" bien sur la même équation ou sur une équation dont les coefficients sont proportionnels à ceux trouvés dans la première méthode.
On rappelle que l'équation cartésienne d'un cercle est ( 𝑥 − ℎ ) + ( 𝑦 − 𝑘 ) = 𝑟 , où ( ℎ ; 𝑘 ) est le centre du cercle et 𝑟 est le rayon.
En géométrie analytique, les solutions d'une équation E d'inconnues x et y peuvent être interprétées comme un ensemble de points M(x, y) du plan affine, rapporté à un repère cartésien. Quand ces points forment une courbe, on dit que E est une équation cartésienne de cette courbe.
Trouver l'équation d'une droite à partir de deux points
Isoler le paramètre b afin de trouver la valeur de l'ordonnée à l'origine. Écrire l'équation de la droite sous la forme y=mx+b y = m x + b avec les valeurs des paramètres m et b.
Propriété : L'équation a x + b y + c = 0 avec a ≠ 0 ou b ≠ 0 est l'équation d'une droite d et, réciproquement, toute droite d a une équation du type a x + b y + c = 0.
Pour convertir l'équation polaire en Cartésienne, on utilise : x = r cos θ, donc cos θ = x/r. L'équation r = 2 cos θ devient r = 2x/r.
A et B n'ont pas la même abscisse, l'équation de (AB) ets de la forme y = ax + b Le point A(-5 ; 4) est un point de la droite donc ses coordonnées vérifient l'équation de (AB) yA = axA + b 4 = -5a + b (1) De même pour le point B(0 ; 6) yB = axB + b 6 = 0a + b (2) Il faut résoudre le système : 4 = -5a + b (1) 6 = 0a + b ...
Si sont deux vecteurs non-colinéaires du plan P, le vecteur est normal au plan P si et seulement si est orthogonal aux vecteurs . Dans un repère orthonormal, tout plan P a une équation de forme ax + by + cz + d = 0 avec a, b et c non-nuls et le vecteur est normal à P.
L'équation de la trajectoire est une fonction polynôme de degré 2 de type y\left(t\right)=ax^2+bx+c. La trajectoire de la balle est une portion de parabole.
Lorsqu'une droite est parallèle à l'un des axes (abscisses ou ordonnées) alors son équation cartésienne est soit de la forme a.x + c = 0 ou bien de la forme b.y + c = 0.
Pour passer de l'équation réduite d'une droite à son équation cartésienne, il suffit de mettre tous les termes du même côté. Donner une équation cartésienne de la droite y = 5x + 4. Une équation cartésienne de cette droite est –5x + y – 4 = 0.
Une équation cartésienne de droite est une équation de la forme ax+by+c=0. Remarque : Il existe une infinité d'équations cartésiennes d'une même droite. Propriété : Si une droite a pour équation cartésienne ax+by+c=0 alors un vecteur directeur de cette droite a pour coordonnées (−b;a).
L'abscisse à l'origine est la valeur de l'abscisse (x) lorsque l'ordonnée (y) vaut zéro. Autrement dit, c'est l'endroit sur le graphique où la droite croise l'axe des abscisses. L'ordonnée à l'origine est la valeur de l'ordonnée (y) lorsque l'abscisse (x) vaut zéro.
Deux droites (d) et (d') sont parallèles si tout vecteur directeur de l'une est aussi vecteur directeur de l'autre. En effet, si est une équation cartésienne de (d), alors pour tout réel non nul, est une autre équation de la même droite.
Pour déterminer si trois points sont alignés, il existe plusieurs méthodes. Les points A, B et C sont alignés ⇔ (AB) et (AC) ont le même cœfficient directeur . A(3 ; 7), B(0 ; –2) et C(1 ; 1) sont-ils alignés ? Les deux cœfficients directeurs sont égaux à 3, donc A, B et C sont alignés.
Pour prouver ces affirmations, René Descartes rapporte des points d'une même courbe à deux axes mais de même origine grâce au système de coordonnées aujourd'hui appelé coordonnées cartésiennes.
Donner une équation cartésienne de la médiatrice mAC du segment [AC]. L'équation cartesienne est de la forme ax + by + c = 0, où le vecteur ( a b ) est non nul et orthogonal à la médiatrice, donc colinéaire au vecteur −→ AC = ( 2 −2 ).
Soient a et b deux réels. Une équation du cercle de centre Ω(a;b) et de rayon r est (x−a)2+(y−b)2=r2.
( x − x 0 ) 2 + ( y − y 0 ) 2 = R 2 . Le périmètre d'un cercle de rayon R est 2πR, 2 π R , l'aire d'un disque de rayon R est πR2. π R 2 .