La procédure de freinage consiste alors, une fois que l'avion est au sol, à déployer les inverseurs, puis à augmenter le régime du moteur après le toucher des roues pour recréer de la poussée (le moteur étant pratiquement au ralenti lors de la phase d'atterrissage).
Actuellement tous les avions de transport sont équipés de freins à disques carbone/carbone. Le carbone-carbone est composé d'une matrice en carbone et d'un renfort en fibres de carbone. Il appartient à la famille des composites à hautes performances thermiques ou composites thermostructuraux.
Ce sont les grands panneaux qui se déploient sur les ailes après le toucher. Certains avions permettent leur déploiement automatique après l'atterrissage. En effet, il existe une commande qui permet de les armer lors de l'approche, pour que les pilotes aient une action de moins à faire lors du toucher.
Tant que l'avion a de la vitesse, l'air s'écoule au dessus et en dessous de son aile et il est capable de voler. Si les moteurs ne fonctionnent pas, on ne peut pas maintenir sa vitesse en gardant son altitude et on se met donc en descente.
L'avion s'élance sur la piste pour atteindre les 200 à 250 km/h. C'est la vitesse de décollage dite V1. Au-delà de cette vitesse, un pilote est obligé de décoller quoi qu'il arrive car il ne serait plus possible d'arrêter l'avion dans les limites de sécurité prévues.
Les avions, à l'atterrissage et au décollage, se placent toujours face au vent. Cette règle permet de réduire au minimum leur vitesse lorsqu'ils se posent et assure leur portance au moment de prendre leur envol. A la construction d'un aéroport, les pistes sont donc toujours installées en fonction des vents dominants !
L'air qui se déplace plus lentement pousse plus fort sur l'aile que l'air qui se déplace plus rapidement. L'air sous l'aile pousse donc l'avion vers le haut, c'est pour cela que les avions restent dans le ciel et ne tombent pas.
Galan. Une fois posé sur l'eau, "l'avion flotte normalement le temps que les passagers soient secourus" mais "il n'est pas fait pour être totalement étanche, l'eau finit par entrer, il peut aussi y avoir des ouvertures dans le fuselage à l'impact", observe par ailleurs M. Favé.
Que ça soit pour rouler au sol ou voler, un avion utilise la même source de poussée : ses moteurs. Certes, le régime des moteurs au sol est très faible mais c'est bien lui qui permet d'avancer, et non une quelconque motorisation située dans les roues, d'où la problématique de la marche arrière.
La procédure de freinage consiste alors, une fois que l'avion est au sol, à déployer les inverseurs, puis à augmenter le régime du moteur après le toucher des roues pour recréer de la poussée (le moteur étant pratiquement au ralenti lors de la phase d'atterrissage).
Un destructeur de portance, ou spoiler, est un dispositif mobile rectangulaire située sur l'extrados de l'aile d'un avion (notamment des avions de ligne). Avec les volets hypersustentateurs, les becs de bord d'attaque et les compensateurs, les spoilers font partie des commandes de vol secondaires.
Plus on monte en altitude, moins l'air en effet oppose de résistance à l'avion et plus les moteurs sont efficaces. L'avion consomme moins de carburant et pourra voler plus vite.
Amortisseurs à lames
Au toucher des roues, sous l'influence du poids de l'avion et de la vitesse verticale, la jambe commence à se plier pour absorber l'énergie de l'atterrissage. Comme pour le système élastique (shandow), l'énergie absorbée est ensuite dissipée dans la structure du fuselage à un débit contrôlé.
La portance aérodynamique est la composante de la force subie par un corps en mouvement dans un fluide qui s'exerce perpendiculairement à la direction du mouvement (au vent relatif). Cela concerne les aérodynes (engins plus denses que l'air).
L'atterrissage d'un avion se fait face au vent pour atterrir sur une distance plus courte. L'utilisation des pleins volets (et si installés les becs) permet de réduire la vitesse d'approche. La distance d'atterrissage augmente avec l'altitude et la température.
En vol, les turbulences sont souvent redoutées par les passagers. Il n'y a pourtant aucun risque.
Les recourbures au bout d'ailes, communément appelé « Winglets », permettent de réduire la trainée induite et par conséquent réduire la consommation de carburant. Comment ? L'écoulement de l'air au-dessus et en-dessous de l'aile crée des tourbillons en bout d'aile créant ainsi des frottements supplémentaires .
Vous avez peut-être déjà entendu cette histoire, mais ce n'est pas la première fois qu'un tel événement se produit. Et malgré ce succès, l'atterrissage d'un avion sur l'eau est extrêmement dangereux. L'amerrissage est un atterrissage d'urgence contrôlé sur l'eau.
En vol à trajectoire verticale constante (vol horizontal par exemple), le décrochage d'un avion survient lorsque la vitesse passe en dessous de sa vitesse minimale (dite vitesse de décrochage), d'où le nom de « perte de vitesse » qui lui était donné aux débuts de l'aviation.
Le pilote étant assis à gauche du cockpit, l'embarquement des passagers par la gauche lui permet de surveiller le bon déroulement du processus.
La force de traînée est donc celle qui s'oppose au mouvement de l'avion ; c'est la résistance à l'avancement. La force de portance, ou de sustentation, est celle qui maintient l'avion en l'air.
Quand le vent est aligné avec la piste, il n'y a aucun problème, c'est le vent de travers qui va imposer des limitations. Ce qu'on appelle le vent de travers est la composante du vent qui vient vraiment perpendiculairement à la piste.
Le cancer n'est pas la seule maladie dont le risque augmente avec la fréquence des vols aériens. Avec un vol de seulement deux heures et demie, une augmentation de 20% de maladies bénignes, comme la grippe, est généralement observée*.
Pour obtenir plus de portance, l'aile peut soit dévier plus d'air (masse) ou augmenter la vitesse verticale de cet air. Cette vitesse verticale derrière l'aile est appelée " flux descendant ". La Figure 5 montre comment le flux descendant apparaît du point de vue du pilote (ou dans une soufflerie).