Sur un axe gradué, on repère chaque point grâce à un nombre appelé son abscisse. Exemple : Sur l'axe gradué précédent, L'abscisse de A est 1, l'abscisse de H est 4, l'abscisse de T est 1,5 et l'abscisse de S est 6,25.
Dans un plan muni d'un repère orthogonal, la position d'un point A est définie par deux nombres relatifs qui sont ses coordonnées : la première a est l'abscisse de ce point et la deuxième b son ordonnée. On note A(a ; b). Le point O de coordonnées (0 ; 0) est l'origine du repère orthogonal.
coordonnées d'un point
Dans un repère du plan, on a besoin de deux nombres pour indiquer la position d'un point : ce sont ses coordonnées. La première coordonnée, l' abscisse, se lit sur l'axe horizontal (l'axe des abscisses) ; la seconde, l' ordonnée, se lit sur l'axe vertical (l'axe des ordonnées).
L'abscisse d'un point correspond au nombre d'unités de graduation entre l'origine (O) et le point. Tu peux donc déterminer l'abscisse d'un point en comptant les unités de graduation à partir de l'origine. Il y a 2 unités de graduation entre l'origine et le point C. Le point C a pour abscisse 2, on note C(2).
Coordonnée horizontale permettant de définir la position horizontale d'un point dans un plan ou sur une droite orientée. L'axe des abscisses et l'axe des ordonnées permettent de placer un point sur un repère. Exemple : Abscisse à l'origine, abscisse curviligne.
Degrés décimaux (DD) : 41.40338, 2.17403. Degrés, minutes et secondes (DMS) : 41°24'12.2"N 2°10'26.5"E. Degrés et minutes décimales (DMM) : 41 24.2028, 2 10.4418.
Sur une droite graduée, chaque point est repéré par un unique nombre relatif : son abscisse. Cette droite graduée, avec le centimètre pour unité de longueur, a pour origine le point O. O a pour abscisse 0. On note A(−3,5) et B(5).
Pour calculer la distance entre deux points sur une droite graduée, on effectue la différence entre la plus grande abscisse et la plus petite abscisse. Exemple : Calcule la distance entre le point G d'abscisse 4 et le point H d'abscisse − 7. 4 − 7 On compare les abscisses pour trouver la plus grande.
On appelle image de x par f le nombre f(x). On appelle antécédent de y le nombre x telle que f(x) = y.
Pour trouver son abscisse, on trace une parallèle à l'axe des ordonnées ; on lit alors l'abscisse du point à l' intersection avec l'axe horizontal. Pour trouver son ordonnée, on trace une parallèle à l'axe des abscisses ; on lit alors l'ordonnée du point à l' intersection avec l'axe vertical.
Définition : Le nombre associé à un point sur une demi-droite graduée est l'abscisse de ce point. L'origine O de la demi-droite a pour abscisse 0. A est le point d'abscisse 1. Le point B a pour abscisse 2,5.
Formule : Vecteur de position d'un point divisant un segment selon un rapport. Soit 𝑃 un point sur un segment 𝐴 𝐵 le divisant selon le rapport 𝑚 ∶ 𝑛 . Alors, le vecteur position 𝑂 𝑃 est donné par 𝑂 𝑃 = 𝑚 𝑚 + 𝑛 𝑂 𝐵 + 𝑛 𝑚 + 𝑛 𝑂 𝐴 .
Soient A ( x A ; y A ) et B ( x B ; y B ) deux points dans un repère orthonormé. Alors la distance entre les points A et B est A B = ( x B − x A ) 2 + ( y B − y A ) 2 .
Dans un repère orthonormé du plan, la distance entre deux points A et B de coordonnées respectives (xA;yA) et (xB;yB) est donnée par : AB=(xB−xA)2+(yB−yA)2 . On traite le cas où xB>xA et yB>yA. On considère le point C de coordonnées (xB;yA).
Des petits repères (des traits) avec des chiffres y sont gravés. C'est la graduation et on dit que la règle est graduée. Pour mesurer la longueur du segment [AB], c'est-à-dire la distance entre les deux points A et B, j'utilise la graduation : j'aligne les points A et B le long de la règle.
Pour repérer un nombre décimal sur une droite graduée, il faut additionner sa partie entière à sa partie décimale. Pour placer un nombre décimal sur une droite graduée, on repère sa partie entière puis on ajoute sa partie décimale.
Lorsque l'équation de la droite est présentée sous la forme y = ax + b, l'ordonnée à l'origine est le b. On peut calculer l'abscisse à l'origine avec la formule x = -b/a.
Repère orthogonal et orthonormal
Si les axes (OI) et (OJ) sont perpendiculaires, alors est un repère orthogonal. Si les axes (OI) et (OJ) sont perpendiculaires, et qu'en plus OI = OJ alors est un repère orthonormal (ou orthonormé).
En mathématiques, un repère permet d'identifier par une liste de coordonnées chaque point d'une droite, d'un plan ou plus généralement d'un espace affine. Ce procédé fonde la géométrie analytique, dans laquelle les transformations géométriques peuvent être étudiées par leur expression.
L'axe vertical d'un plan cartésien se nomme l'axe des ordonnées, ou l'axe des y . Cet axe gradué est orienté du bas vers le haut du plan cartésien. On y indique la valeur de la variable dépendante dans une relation entre deux variables.
Les coordonnées géographiques sont exprimées en degrés sexagésimaux (Degrés Minutes Secondes), degrés décimaux, grades ou radians et donnent la latitude et la longitude d'un lieu par rapport à un méridien.
Par convention les coordonnées géographiques s'écrivent ainsi : 45° 45′ 35″ nord, 4° 50′ 32″ est. Dans cet exemple, il faut lire « quarante-cinq degrés, quarante-cinq minutes, et trente-cinq secondes de latitude nord, et quatre degrés, cinquante minutes et trente-deux secondes de longitude est. »
Remplir une adresse et cliquer sur le bouton "Obtenir les coordonnées GPS" pour afficher ses latitude et longitude. Vous pouvez consulter le résultat dans la colonne de gauche ou directement sur la carte. Google Map disponible sur la page itinéraire.