Théorème (théorème fondamental du calcul intégral) : Si f est une fonction continue et positive sur [a,b] , alors la fonction F définie sur [a,b] par F(x)=∫xaf(t)dt F ( x ) = ∫ a x f ( t ) d t est dérivable sur [a,b] , et a pour dérivée f .
La dérivabilité se démontre usuellement de deux façons : dans l'étude locale (c'est-à-dire en se plaçant dans un voisinage du point étudié), en utilisant directement la définition de l'existence du nombre dérivé à l'aide de limites.
f (x0) = f1 (x0) + if2 (x0). On dit qu'une fonction f est dérivable sur un intervalle I lorsque f est dérivable en tout point de I. On note f la fonction dérivée de f qui à tout x ∈I associe f (x). Si g ne s'annule pas sur I, f g est aussi dérivable sur I et ( f g ) = f g − fg g2 .
Une fonction f:I→R f : I → R est donc dérivable en a si et seulement s'il existe α∈R α ∈ R et une fonction ε définie dans un intervalle J ouvert contenant 0 , vérifiant limh→0ε(h)=0 lim h → 0 ε ( h ) = 0 tels que ∀h∈J, f(a+h)=f(a)+αh+hε(h). ∀ h ∈ J , f ( a + h ) = f ( a ) + α h + h ε ( h ) .
Si la courbe passe au-dessus et en-dessous de l'axe des 𝑥 dans l'intervalle [ 𝑎 ; 𝑏 ] , alors son intégrale définie est la différence entre l'aire au-dessus de l'axe des 𝑥 et l'aire sous l'axe des 𝑥 , dans l'intervalle [ 𝑎 ; 𝑏 ] .
On dit que f est intégrable sur I ou que ∫If ∫ I f est absolument convergente si ∫I|f| ∫ I | f | converge. Théorème : Si f est intégrable sur I , alors ∫If(t)dt ∫ I f ( t ) d t converge. Si ∫If(t)dt ∫ I f ( t ) d t converge sans que f ne soit intégrable sur I , alors on parle d'intégrale semi-convergente.
Pour montrer qu'une application est bien définie, il faut s'assurer que pour chaque antécédent x on définit bien une image unique y dans l'ensemble d'arrivée (d'où l'importance de l'ensemble d'arrivée).
Une fonction n'est pas dérivable en un réel a de son domaine si notamment la dérivée à gauche en ce point est différente de la dérivée à droite en ce même point.
D'après le théorème des fonctions réciproques, la fonction est dérivable en tout point image d'un tel que. Mais on a : f ′ ( x ) = 0 ⇔ x = 0 , donc est dérivable en tout point autre que. Donc est dérivable sur. Représentation graphique de et de dans un repère orthonormé.
Sommaire. On peut déterminer graphiquement la valeur de la dérivée d'une fonction f en un réel a, en utilisant la tangente à la courbe représentative de f au point d'abscisse a. On considère la fonction f, dont la courbe représentative C_f est donnée ci-dessous. T_0 est la tangente à C_f au point d'abscisse 0.
Se dit d'une fonction qui a une dérivée. (On distingue, selon les cas, les fonctions dérivables à droite ou à gauche, dérivables sur un intervalle ouvert ou fermé, dérivables n fois ou indéfiniment dérivables.)
Si f est une fonction dérivable sur un intervalle contenant un réel a, la tangente à la courbe représentative de f au point d'abscisse a a pour équation: y = f(a) + f′(a)(x - a) .
Théorème : Soit I un intervalle de R et f:I→R f : I → R dérivable. Alors : f est croissante sur I si et seulement si, pour tout x∈I x ∈ I , f′(x)≥0 f ′ ( x ) ≥ 0 ; f est strictement croissante sur I si et seulement si f′≥0 f ′ ≥ 0 et si f′ n'est identiquement nulle sur aucun intervalle [a,b]⊂I [ a , b ] ⊂ I avec a<b .
Pour que la fonction valeur absolue soit dérivable en 0, il doit exister un réel unique L tel que tende vers L lorsque h tend vers 0. Or : si h > 0, donc on aurait L = 1 ; si h < 0, donc on aurait L = −1.
Démonstration : 4)
Soit x = f − 1 ( y ) ; on a x 0 = f − 1 ( y 0 ) et par conséquent. Or est continue, donc quand tend vers y 0 , x = f − 1 ( y ) tend vers x 0 = f − 1 ( y 0 ) et le rapport x − x 0 f ( x ) − f ( x 0 ) a une limite puisque est dérivable en et que sa dérivée f ′ ( x 0 ) est non nulle.
Pour montrer qu'une suite (Un) n'est pas arithmétique, il suffit de calculer les 3 premiers termes U0, U1 et U2 (ou parfois les 4 ou 5 premiers, si les 3 premiers ne suffisent pas) et de constater que U_2 - U_1 \ne U_1 - U_0.
Pour démontrer qu'une application f:E→F f : E → F est surjective, on démontre que, pour tout y∈F y ∈ F , l'équation y=f(x) y = f ( x ) admet toujours au moins une solution x dans E .
La fonction peut donc être définie par 𝑓 ( 𝑥 ) = 2 𝑥 + 4 (notation fonctionnelle) ou 𝑓 ∶ 𝑥 ⟶ 2 𝑥 + 4 (notation par flèche). Cela signifie que l'on peut déterminer si 𝑓 définit une fonction en traçant la représentation graphique de 𝑦 = 𝑓 ( 𝑥 ) et en effectuant le test de la droite verticale.
On parlera d'intégrale généralisée ou bien d'intégrale impropre. f(x)dx . Si l'intégrale n'est pas convergente, on dira qu'elle est divergente. Ce statut est appelé nature de l'intégrale.
Si, pour tout entier naturel n, I_{n+1}-I_{n}\geqslant 0, on en déduit que la suite est croissante. Si, pour tout entier naturel n, I_{n+1}-I_{n}\leqslant 0, on en déduit que la suite est décroissante.
Si I est un intervalle borné, toute fonction continue par morceaux et bornée sur I est intégrable sur I. En particulier, si f admet une limite finie aux bornes de I, alors f est intégrable sur I. g(t). Alors f est intégrable au voisinage de t0 si, et seulement si, g est inté- grable au voisinage de t0.
Lorsqu'on se promène sur la courbe en allant de la gauche vers la droite : Sur l'intervalle [0 ; 2,5], on monte, on dit que la fonction est croissante. Sur l'intervalle [2,5 ; 5], on descend, on dit que la fonction est décroissante.
▶ Si un+1 − un est positive, alors la suite (un) est croissante. ▶ Si un+1 − un est négative, alors la suite (un) est décroissante. b) Si tous les termes de la suite sont strictement positifs, alors il suffit de comparer le rapport un+1 un à 1. ▶ Si un+1 un ⩾ 1, alors la suite (un) est croissante.
Pour trouver le maximum d'une fonction sur un intervalle , il faut : déterminer la dérivée de la fonction, ; résoudre l'équation f ′ ( x ) = 0 ; vérifier qu'il s'agit d'un maximum en testant d'autres valeurs de la fonction, ou en utilisant la dérivée seconde.
Deux droites sont parallèles si et seulement si elles ont le même coefficient directeur. Il faut donc ici que la tangente T_a ait pour coefficient directeur b. Deux droites sont parallèles si et seulement si elles ont le même coefficient directeur.