Définitions : Soit f une fonction définie sur un intervalle I. - Dire que f est croissante sur I (respectivement strictement croissante sur I) signifie que pour tous réels a et b de I : si a < b alors f (a) ≤ f (b) (respectivement si a < b alors f (a) < f (b)).
On dit qu'une fonction f est dérivable sur un intervalle I lorsque f est dérivable en tout point de I. On note f la fonction dérivée de f qui à tout x ∈I associe f (x). Si g ne s'annule pas sur I, f g est aussi dérivable sur I et ( f g ) = f g − fg g2 .
Exemple. Soit f une fonction de la variable réelle x définie par f ( x ) = 8 x + 32 . La fonction est définie pour tous les x tels que est positif ou nul et seulement pour ceux-ci. La quantité est positive ou nulle si et seulement si 8 x est supérieur ou égal à − 32 .
Si une fonction f f f est définie, continue et strictement monotone sur un intervalle [ a ; b ] [a; b ] [a;b] alors, pour tout réel k k k compris entre f ( a ) f(a) f(a) et f ( b ) f(b) f(b), l'équation f ( x ) = k f(x)=k f(x)=k a une unique solution dans l'intervalle [ a ; b ] .
« Une fonction f est continue sur un intervalle si on peut dessiner son graphe sans lever le crayon d'un bout à l'autre de l'intervalle. »
La fonction 𝑓 est strictement croissante sur les intervalles où 𝑓 ′ ( 𝑥 ) > 0 et est strictement décroissante sur les intervalles où 𝑓 ′ ( 𝑥 ) < 0 . Par conséquent, 𝑓 est strictement croissante sur l'intervalle ] 0 ; 1 [ et est strictement décroissante sur les intervalles ] − ∞ ; 0 [ et ] 1 ; + ∞ [ .
Pour montrer qu'une fonction f(x) est croissante, il suffit de montrer f(x + a) > f(x) si a est strictement positif ou ce qui revient au même que f(x + a) - f(x) > 0 si a > 0. Avec f(x) = x3 on y arrive comme suit : (x+a)3−x3=x3+3ax2+3a2x+a3−x3.
a) La fonction f admet une limite en x0 (c'est-`a-dire, f est continue en x0) si et seulement si elle admet f(x0) comme limite `a droite et `a gauche en x0. b) Si f admet des limites distinctes `a droite et `a gauche en x0, alors f n'admet pas de limite en x0.
Lorsque l'on définit une fonction, on l'écrit généralement sous la forme 𝑓 ∶ 𝑋 ⟶ 𝑌 . Cela signifie que pour tout élément 𝑥 ∈ 𝑋 , on associe par la fonction 𝑓 un élément 𝑦 ∈ 𝑌 . Nous écrivons cela comme 𝑓 ( 𝑥 ) = 𝑦 .
On appelle f fonction définie sur D , tout procédé de calcul, qui à chaque réel x , lui associe un réel unique noté f(x) .
Par conséquent, l'ensemble de définition de 𝑓 est l'ensemble des nombres réels, ℝ . Pour trouver l'ensemble de définition de la dérivée, nous devons considérer les points 𝑥 auxquels 𝑓 ′ ( 𝑥 ) = 1 3 √ 𝑥 n'est pas définie. Le seul point où elle n'est pas définie est lorsque le dénominateur est égal à zéro.
Théorème : Soit une fonction f définie et dérivable sur un intervalle I. - Si f '(x) ≤ 0, alors f est décroissante sur I. - Si f '(x) ≥ 0, alors f est croissante sur I. Exemple : Soit la fonction f définie sur R par f (x) = x2 − 4x .
On appelle un intervalle l'ensemble des nombres réels compris entre deux nombres réels a et b, ou de manière équivalente l'ensemble des points sur la droite dont la marque est entre a et b. Exemple : l'intervalle [ 2 ; 5 ] est l'ensemble des nombres réels x tels que 2 ≤ x, et x ≤ 5.
( ) 7 g x x = − est une fonction linéaire. 0 a > , alors f est croissante sur ℝ. 0 a < , alors f est décroissante sur ℝ. 0 a = , alors f est constante sur ℝ.
Pour évaluer 𝑓 [ 𝑓 ( 𝑥 ) ] on utilise une fonction composée, qui peut aussi s'écrire ( 𝑓 ∘ 𝑓 ) ( 𝑥 ) . Pour évaluer 𝑓 [ 𝑓 ( 𝑥 ) ] en une valeur spécifique de 𝑥 , on évalue d'abord 𝑓 ( 𝑥 ) en cette valeur de 𝑥 . Puis on évalue 𝑓 ( 𝑥 ) encore une fois, cette fois en utilisant l'image obtenue précédemment comme argument.
Pour une fonction à partir de sa courbe, on lit directement sur l'axe des abscisses les valeurs entre lesquelles la courbe s'inscrit. Pour un graphe, qui est une liste de points avec les coordonnées x et y, le domaine de définition est tout simplement l'ensemble des abscisses des points, soit les valeurs de x.
f(x) = l alors f est prolongeable par continuité en a en posant f(a) = l. Démonstration : Cela découle de l'équivalence entre la continuité définie ci-dessus et la continuité séquen- tielle.
Théorème Soit f une fonction définie sur un intervalle I et a ∈ I. Si f est dérivable en a Alors f est continue en a. f(x) = f(a), et donc que f est donc continue en a.
Pour trouver le maximum d'une fonction sur un intervalle , il faut : déterminer la dérivée de la fonction, ; résoudre l'équation f ′ ( x ) = 0 ; vérifier qu'il s'agit d'un maximum en testant d'autres valeurs de la fonction, ou en utilisant la dérivée seconde.
Pour comparer deux fonctions définies par f(x) et g(x): - on calcule f(x) - g(x), en simplifiant autant que possible l'expression. - on réalise le tableau de signes du résultat (revoir les signes des fonctions affines et des trinômes !).
Une fonction est dite strictement croissante sur un intervalle de x si les valeurs de y ne font qu'augmenter. Une fonction est dite strictement décroissante sur un intervalle de x si les valeurs de y ne font que diminuer.
▶ Si un+1 − un est positive, alors la suite (un) est croissante. ▶ Si un+1 − un est négative, alors la suite (un) est décroissante. b) Si tous les termes de la suite sont strictement positifs, alors il suffit de comparer le rapport un+1 un à 1. ▶ Si un+1 un ⩾ 1, alors la suite (un) est croissante.
Les fonctions constantes sont les seules fonctions simultanément croissantes et décroissantes. Toute fonction affine est monotone (strictement croissante si le taux d'accroissement est strictement positif, strictement décroissante si le taux d'accroissement est négatif).
On peut parfois simplifier l'écriture. Pour cela, on peut utiliser la droite numérique. (voir cet exercice). Pour résoudre une équation |x+a|=r | x + a | = r , on commence par l'écrire sous la forme |x−b|=r | x − b | = r , en écrivant éventuellement x+a=x−(−a) x + a = x − ( − a ) .
Remarque : L'ensemble des nombres réels ℝ est un intervalle qui peut se noter ] − ∞ ; +∞[.