Comment se produisent les dommages à l'ADN? La plupart des dommages à l'ADN causés par du rayonnement comportent des modifications chimiques des nucléotides qui provoquent l'apparition de liaisons chimiques qui ne devraient pas être là. Ces liaisons chimiques altèrent la forme de l'ADN.
Cette dénaturation peut être réalisée in vitro en soumettant l'ADN à tout agent chimique ou physique capable de déstabiliser les liaisons hydrogène, comme le pH, la température, certains solvants, des concentrations ioniques élevées, des agents alcalins,...
Les altérations de l'ADN gamétique ont diverses origines difficiles à déterminer ; elles impliquent des phénomènes d'hypométhylation, des stress oxydatifs et des facteurs environnementaux (formation d'adduits). La dégradation de l'ADN est aussi liée à des phénomènes d'apoptose plus ou moins tardifs.
Synthèse du brin d'ADN permettant la réparation
Cette synthèse d'ADN nécessite l'activité d'une ADN polymérase qui va synthétiser un nouveau brin d'ADN à partir de la séquence d'ADN du brin non altéré.
Le liquide vaisselle permet de casser les membranes cellulaires (celle qui entoure la cellule et celle qui entoure le noyau) car les cellules sont constitués d'eau et les membranes cellulaires de lipide (molécules que l'on trouve dans l'huile). L'alcool permet de' compacter l'ADN sous forme d'une pelote.
La molécule d'ADN, également connue sous le nom d'acide désoxyribonucléique, se trouve dans toutes nos cellules. C'est le « plan détaillé » de notre organisme aussi appelé code génétique : il contient toutes les informations nécessaires au développement et au fonctionnement du corps.
Ainsi, l'ajout d'éthanol ou d'alcool isopropylique (alcool à friction) fera se regrouper l'ADN qui formera un précipité blanc visible. Il est important d'utiliser de l'alcool froid, car il permet d'extraire une plus grande quantité d'ADN. Si l'alcool est trop chaud, l'ADN peut se dénaturer, ou se désintégrer.
Les lésions ainsi générées sont de natures très diverses : bases altérées ou perdues, liens intra – ou inter-brins, dimères de thymines, cassures simple ou double brin (Fig. 1). Les différentes lésions de l'ADN sont causées par une grande variété d'agents.
Le taux d'erreur global lors de la réplication de l'ADN et de la division cellulaire est de l'ordre de 10-9 (1 nucléotide erroné pour 109 copiés). On estime par ailleurs que l'ADN d'une cellule subit jusqu'à 106 dommages moléculaires par jour.
La manipulation des gènes permet d'apporter des modifications permanentes aux embryons. Comme indiqué plus haut, les scientifiques pourraient éliminer certaines maladies héréditaires. Mais ils pourraient aussi changer la couleur des cheveux, la couleur des yeux ou la taille de l'enfant.
mutation par substitution : remplacement d'un (ou plusieurs) nucléotides par un autre (ou plusieurs autres) ; mutation par insertion : ajout d'un ou plusieurs nucléotides ; mutation par délétion : perte d'un ou plusieurs nucléotides.
Une mutation est une modification ponctuelle et accidentelle de la séquence nucléotidique de l'ADN. Les mutations se produisent le plus souvent lors de la réplication : on parle de mutations spontanées.
Des erreurs peuvent se produire aléatoirement lors de la réplication de l'ADN. Leur fréquence est augmentée par l'action d'agents mutagènes. L'ADN peut également être endommagé en dehors de sa réplication. Les mutations sont à l'origine de la diversité des allèles au cours du temps.
À propos de la conservation de la molécule d'ADN : une durée de vie théorique de 100.000 ans.
Tout d'abord l'organisme transforme l'éthanol (alcool pur) en aldehyde, une toxine très dangereuse pour l'ADN. Puis il détruit cette toxine grâce à une enzyme spécifique appelée «ALDH2».
L'ADN prend normalement la forme de deux brins entortillés en double hélice, mais pendant la réplication, cette forme change énormément. En effet, la réplication commence grâce à une ou plusieurs origines de réplication qui sont des séquences de nucléotides spécifiques reconnues par des protéines de réplication.
Pourquoi l'ADN a 2 brins ? L'ADN est le support de l'information génétique. Cette information doit être protégée. Le fait que l'ADN soit double brin permet de "réparer" plus facilement une erreur.
Les mutations spontanées
C'est un phénomène rare, car le plus souvent corrigé et qui a lieu à plus ou moins grande échelle, mais il existe des agents mutagènes qui augmentent la fréquence des mutations.
La thalassémie : une maladie due à une mutation de l'ADN. L'hémoglobine, une protéine présente dans les globules rouges du sang humain, existe sous plusieurs formes. L'une de ces formes est liée à une pathologie nommée « Thalassémie ».
Les rayons UV A changent la structure électronique des bases, c'est-à-dire l'organisation de leurs nuages d'électrons autour des atomes. L'ADN passe alors dans un état dit excité, favorisant les réactions chimiques entre les bases, notamment la dimérisation des thymines.
délétion n.f. Perte d'un fragment d'A.D.N. par un chromosome.
Les enzymes de réplication de l'ADN
Les ADN polymérases : Elles servent à synthétiser de nouveaux brins d'ADN. → L'ADN polymérase I possède une activité exonucléasique (qui élimine des nucléotides) qui permet d'éliminer les amorces d'ARN quand elle se trouve dans le sens 5' vers 3'.
Tous les êtres vivants ont de l'ADN que ce soit une plante, un fruit, ou un animal par exemple. Une molécule d'ADN déroulée mesure environ 2m de long ! Compactée, la molécule d'ADN tient dans le noyau d'une cellule !
Leur pureté est évaluée en mesurant l'absorbance à 280 nm et 230 nm. Le ratio 260/280 permet de détecter une contamination des acides nucléiques par des protéines. Sa valeur varie entre 1,8 et 2,0 pour de l'ADN et entre 2,0 et 2,2 pour de l'ARN. Le ratio 260/230 doit se situer entre 2,0 et 2,2.