On dit qu'une fonction f est monotone ssi elle est soit croissante soit décroissante. La fonction carré x ↦→ x2 n'est pas monotone : en effet, bien qu'elle soit ”tantôt croissante, tantôt décroissante”, elle n'est ni croissante ni décroissante.
Soient a et b deux points de I et k un nombre compris entre ƒ(a) et ƒ(b). De plus, on suppose que ƒ est strictement monotone sur I. Alors il existe un unique point c compris entre a et b tel que ƒ(c) = k. Autrement dit, l'équation ƒ(x) = k admet une unique solution comprise entre a et b.
Soit une fonction continue et strictement monotone sur un intervalle. Si a et b désignent les extrémités de l'intervalle (c'est-à-dire a ou b sont des réels ou sont les symboles − ∞ ou + ∞ ) alors les extrémités de l'intervalle sont lim x → a f ( a ) et lim x → b f ( x ) (ces limites pouvant être elles-mêmes infinies).
Une fonction est monotone lorsqu'elle est croissante sur I ou lorsqu'elle est décroissante sur I . Étudier le sens de variation d'une fonction, c'est découper son ensemble de définition en intervalles sur lesquels la fonction est croissante ou décroissante.
Pour montrer qu'une fonction f(x) est croissante, il suffit de montrer f(x + a) > f(x) si a est strictement positif ou ce qui revient au même que f(x + a) - f(x) > 0 si a > 0. Avec f(x) = x3 on y arrive comme suit : (x+a)3−x3=x3+3ax2+3a2x+a3−x3.
▶ Si un+1 − un est positive, alors la suite (un) est croissante. ▶ Si un+1 − un est négative, alors la suite (un) est décroissante. b) Si tous les termes de la suite sont strictement positifs, alors il suffit de comparer le rapport un+1 un à 1. ▶ Si un+1 un ⩾ 1, alors la suite (un) est croissante.
La fonction f est convexe sur I si sa dérivée f ' est croissante sur I, soit f ''(x) ≥ 0 pour tout x de I. La fonction f est concave sur I si sa dérivée f ' est décroissante sur I, soit f ''(x) ≤ 0 pour tout x de I. Soit la fonction f définie sur R par f (x) = 1 3 x3 −9x2 + 4.
1. Qui est toujours sur le même ton, qui offre une grande uniformité de son, de rythme : Chant monotone. 2. Qui lasse par le manque de variété dans les intonations ou les inflexions : Acteur monotone.
1. Uniformité de ton, d'intonation, d'inflexion : Monotonie de la voix. 2. Manque lassant de variété, de diversité : La monotonie d'un paysage.
Les fonctions constantes sont les seules fonctions simultanément croissantes et décroissantes. Toute fonction affine est monotone (strictement croissante si le taux d'accroissement est strictement positif, strictement décroissante si le taux d'accroissement est négatif).
Une fonction est dite strictement croissante sur un intervalle de x si les valeurs de y ne font qu'augmenter. Une fonction est dite strictement décroissante sur un intervalle de x si les valeurs de y ne font que diminuer.
Lorsque la courbe est au-dessus de l'axe des abscisses, la fonction est positive, et lorsque la courbe est en dessous de l'axe des abscisses, la fonction est négative. Pour calculer le point où la fonction est égale à zéro, nous allons poser 𝑓 de 𝑥 égal à zéro.
f (I) := {f (x)|x ∈ I}. Théor`eme Soit f une fonction continue et I un intervalle contenu dans DDf . Alors f (I) est un intervalle. Autrement dit, l'image d'un intervalle par une fonction continue est un intervalle.
Rappel : Dire qu'une suite (Un) est croissante signifie que pour tout entier n, Un+1 Un. Dire qu'une suite (Un) est décroissante signifie que pour tout entier n, Un+1 Un.
- Si la suite est décroissante nous avons ua ≥ ua+1 ≥ ua+2 ≥ ... ≥ un et elle est, de fait, majorée par son premier terme ua . - Si une suite est croissante ou si elle est décroissante, elle est dite monotone.
(Mathématiques) Qualifie une fonction à une seule variable, qui n'est pas continue ou uniquement croissante ou décroissante dans un intervalle donné. Cette fonction est caractérisée par une courbe en forme de "U", elle est donc non-monotone.
Si le signe de la différence est positif ou nul pour tout n, la suite est croissante. Si le signe de la différence est négatif ou nul pour tout n, la suite est décroissante. Si la différence change de signe en fonction de la valeur de n, la suite n'est pas monotone.
Manque lassant de variété. Synonyme : fadeur, grisaille, impersonnalité, platitude, prosaïsme, tristesse, uniformité. – Familier : ronron, train-train.
Locution conjonctive
Dans l'éventualité où ; à supposer que.
5.3 Inverse d'une fonction monotone
Si on suppose que f ne s'annule jamais sur I, et qu'elle est de signe constant, alors la fonction inverse est monotone sur , de monotonie contraire à celle de f et de même signe.
Une matrice A ∈ Mn(R) est dite monotone si elle satisfait la propriété suivante : ∀x ∈ Rn, Ax ≥ 0 =⇒ x ≥ 0.
La monotone de chaleur est la courbe représentant le nombre d'heures durant lesquelles la puissance thermique est appelée au cours de l'année et ce pour chaque puissance appelée comprise entre un arrêt du chauffage (puissance nulle) et la puissance thermique maximale appelée.
Une fonction f:I→R f : I → R est strictement convexe si ∀(x,y)∈I2,x≠y, ∀t∈]0,1[, f(tx+(1−t)y)<tf(x)+(1−t)f(y).
f est convexe sur I si et seulement si sa dérivée f ' est croissante sur I. f est concave sur I si et seulement si sa dérivée f ' est décroissante sur I. Remarque : une fonction est croissante lorsque sa dérivée est positive. Il apparaît donc logique de s'intéresser au signe de la dérivée de f '(x).
On dit qu'une fonction f est strictement croissante ssi pour x et y dans le DD de f , si on a x < y, on a aussi f (x) < f (y). En langage plus formel, ça donne ∀x,y ∈ DD(f ),x < y ⇒ f (x) < f (y). La fonction cube x ↦→ x3 est strictement croissante, bien que sa dérivée s'annule (en zéro).