Un homothétie h de rapport k transforme un cercle de centre I et de rayon R en un cercle de centre I' et de rayon R' avec I' = h(I) et R' = |k| R. Une homothétie de rapport k multiplie les distances par |k|, les aires par k2 et les volumes par |k|3.
Le terme d'homothétie, dû au mathématicien français Michel Chasles, est composé de deux éléments d'origine grecque : le préfixe homo- (ὁμός), « semblable », et thesis (θέσις), « position ». Il traduit la correspondance entre deux figures de même forme et de même orientation.
En mathématiques, la notion d'homothétie est étudiée en géométrie. Elle désigne une transformation particulière d'une figure géométrique.
L'homothétie est la transformation de l'espace (ici le plan) qui dilate les distances par rapport à une origine O. Le rapport k de l'homothétie est le facteur par lequel les distances sont multipliées. Ce rapport peut être négatif.
Nombre positif ou négatif qui caractérise une homothétie. Le rapport d'homothétie est le rapport entre une mesure algébrique de la figure image et la mesure algébrique correspondante sur la figure initiale. Voici un exemple où k>1: Dans cette illustration, k=m(O, P′)m(O, P) = −m(O, P′′)m(O, P).
Une homothétie conserve l'alignement, le parallélisme et les angles. Une homothétie multiplie les longueurs par \mid k\mid : si \mid k\mid > 1, l'image d'une figure est un agrandissement de cette figure et, si \mid k\mid < 1, l'image d'une figure est une réduction de cette figure.
Une application h:E → F est appelé un "homomorphisme d'espaces vectoriels" ou encore une 'application linéaire', si elle vérifie les conditions: f(u+v)=f(u)+f(v) ∀ (u,v) ∈ E×E. f(λu)=λf(u) ∀ (λ, u) ∈ K×E.
Si k = 1, alors f est l'écriture complexe de la translation de vecteur ayant pour affixe b. Si k = 1, alors f a un unique point fixe w = b/(1 − k) et c'est l'écriture complexe de l'homothétie de centre Ω, le point d'affixe w, et de rapport k.
est une homothétie ou une translation. Il faut bien distinguer cette propriété de la conservation du parallélisme : toute transformation affine transforme des droites parallèles en des droites parallèles ; mais seules les homothéties et les translations transforment toute droite en une droite parallèle à elle-même.
On trouve le centre d'homothétie en reliant A à A', B à B' et C à C', en prolongeant ces traits autant que nécessaire afin qu'ils se coupent en un point O. C'est le centre d'homothétie.
2 Multiplier par un réel positif α : si x ⩽ y et α ⩾ 0, alors αx ⩽ αy. 2 Ajouter des inégalités : si x ⩽ y et a ⩽ b, alors x + a ⩽ y + b. 2 Multiplier des inégalités de nombres positifs : si 0 ⩽ x ⩽ y et 0 ⩽ a ⩽ b, alors xa ⩽ yb. sur R, x ↦→ √ x sur R+.
Réciproque du théorème de Thalès : Si, d'une part les points A,D,C et d'autre part les points A,E,B sont alignés dans le même ordre et si les deux premiers rapports de Thalès sont égaux ( A D A C = A E A B ) alors les droites (DE) et (BC) sont parallèles.
On construit respectivement les symétriques A', B' et C' de A, B et C par l'homothétie de centre O et de rapport -2. Pour construire A' par exemple : - On trace la droite (OA). - L'image A' de A se trouve de l'autre côté de A par rapport au point O. - OA' = 2 x OA.
Une fonction linéaire est une fonction qui, à tout nombre x, associe le nombre ax , où a étant un nombre quelconque donné. a est appelé le coefficient de la fonction linéaire. On notera cette fonction de manière équivalente : ou f : x → ax ou f(x) = ax.
L'ensemble des homothéties vectorielles d'un K-espace vectoriel E, noté ℋ(E), est un sous-groupe du groupe des automorphismes de E, soit le groupe linéaire de E, pour la composition des applications. L'identité sur E est l'homothétie vectorielle de rapport 1.
Si F = E, f est appelée un endomorphisme. Pour montrer que f est une application linéaire, il suffit de vérifier que f(u + λv) = f(u) + λf(v) pour tous u, v ∈ E,λ ∈ K. Propriétés. Si f:E → F est une application linéaire alors • f(0) = 0, • f(λ1u1 + ··· + λnun) = λ1f(u1) + ··· + λnf(un).
Présentation des figures dans le manuscrit
Les figures sont numérotées avec des chiffres arabes dans l'ordre de leur mention dans le texte. Elles ont un titre court et clair, en français et en anglais. Le titre en français se place au-dessus de la figure, le titre anglais en-dessous.
Étymologie. Dérivé régressif de homothétique inventé par le mathématicien Michel Chasles.
Définition : Agrandir ou réduire une figure, c'est construire une figure de même forme en multipliant les longueurs de la figure initiale par un nombre k strictement positif. Exemple: Soit un carré de côté 3 cm. a) Agrandir ce carré dans le rapport 1,2. → Le carré agrandi aura pour côté 3 cm × 1,2 = 3,6 cm.
Définition 1 : On appelle transformation du plan (ou de l'espace) toute fonction bijective du plan (ou de l'espace), c'est-à-dire que tout point du plan (ou de l'espace) possède un et un seul antécédent par cette fonction. Remarque : Une projection sur une droite du plan n'est pas une transformation du plan.
Transformations : translation, rotation, homothétie.
Le rapport de similitude (k) est un rapport entre des longueurs homologues (côtés, périmètres, rayons, circonférences, etc.) de 2 figures semblables.