Une famille de vecteurs de E est une base de E si c'est une famille à la fois génératrice de E et libre. De façon équivalente, une famille est une base de l'espace vectoriel E quand tout vecteur de l'espace se décompose de façon unique en une combinaison linéaire de vecteurs de cette base.
Définition 4 Une famille F = { v1,..., vn} d'un espace vectoriel V sur un corps K est dite base de V lorsqu'elle est libre et génératrice. Par exemple la famille {(1, 1, 1), (1, 2, 3), (1, 2, 4)} est une base de R3.
Le vecteur u = (x, y, z, t) appartient `a F si et seulement si Vect(v1,v2,u) = Vect(v1,v2).
Les coordonnées d'un vecteur v de notre espace vectoriel favori R2 dans une base (i,j) sont deux nombres x et y qui vérifient l'équation caractéristique des coordonnées : v = xi + yj.
L'espace vectoriel R 3 a pour dimension 3 . La partie { u , v , w } contient exactement trois vecteurs, aussi, pour démontrer que ( u , v , w ) est une base de R 3 , il suffit de démontrer que la partie { u , v , w } est une partie libre ou bien que la partie { u , v , w } est une partie génératrice de R 3 .
Définition 3 : base
Deux vecteurs forment une base du plan vectoriel si, et seulement si, ils NE sont PAS colinéaires.
Pour montrer que les vecteurs sont linéairement indépendants, on résout le système associé à l'équation vectorielle a \vec{u}+b \vec{v}+c \vec{w}=\overrightarrow{0} : on doit obtenir a=b=c=0. Les vecteurs étant linéairement indépendants, ils forment une base de l'espace.
le vecteur x de E non nul est dit vecteur propre de u si et seulement s'il existe un élément λ de K tel que u(x) = λx ; le scalaire λ élément de K est dit valeur propre de u si et seulement s'il existe un vecteur x non nul de E tel que u(x) = λx ; soit λ une valeur propre de u.
Définition 4.1.7. a) Deux vecteurs sont orthogonaux si et seulement si leur produit scalaire est nul. b) Une base est orthonormée si et seulement si ses vecteurs sont de norme 1 et deux `a deux orthogonaux.
Pour calculer la norme d'un vecteur, il faut utiliser la formule ‖ v → ‖ = v x 2 + v y 2 .
Des vecteurs V 1 , … , V n sont linéairement dépendants s'ils possèdent une relation de dépendance linéaire, ∑ i = 1 n λ i V i = 0 (avec les non tous nuls). On peut dire aussi qu'ils forment une famille liée. Toute famille qui contient une famille liée est liée.
Pour indiquer les coordonnées du vecteur , on utilise la notation ou . On considère deux points A(xA ; yA) et B(xB ; yB). Le vecteur a pour coordonnées (xB – xA ; yB – yA ). Soient (x ; y) et (x' ; y') deux vecteurs du plan muni d'une base orthonormée ( , ).
Conclure. On place l'abscisse du point A dans l'équation de la droite, et on conclut : Si l'on obtient bien l'ordonnée de A, alors A appartient à la droite. Si l'on obtient un nombre différent de l'ordonnée de A, alors A n'appartient pas à la droite.
Une base vectorielle est un ensemble de vecteurs qui permet d'exprimer n'importe quel autre vecteur à l'aide d'une combinaison linéaire. On peut décomposer n'importe quel vecteur en deux dimensions en une somme de deux autres vecteurs lesquels sont multipliés par des scalaires.
Pour démontrer que F est un sous-espace vectoriel de E , on applique la caractérisation des sous-espaces vectoriels, c'est-à-dire qu'on vérifie que 0E∈F 0 E ∈ F et que, pour tout couple (x,y)∈F2 ( x , y ) ∈ F 2 et tout scalaire λ∈K λ ∈ K , on a {x+y∈Fλx∈F.
(1) H est un hyperplan si, et seulement si, c'est le noyau d'une forme linéaire non nulle. (2) Si H = Ker(ϕ) = Ker(ψ), alors il existe λ ∈ R∗ tel que ϕ = λψ.
Repère orthogonal et orthonormal
Si les axes (OI) et (OJ) sont perpendiculaires, alors est un repère orthogonal. Si les axes (OI) et (OJ) sont perpendiculaires, et qu'en plus OI = OJ alors est un repère orthonormal (ou orthonormé).
Dans un espace vectoriel euclidien, une famille (e1,…,ep) ( e 1 , … , e p ) est dite orthonormale (on dit aussi orthonormée) si elle est constituée de vecteurs unitaires (de norme 1) deux à deux orthogonaux.
Une famille est une base si et seulement la matrice P formée par les vecteurs colonnes des coordonnées des vecteurs de la famille dans la base de référence est une matrice inversible. Dans ce cas, P est la matrice de passage de la base de référence vers B'. Ici, il s'agit de montrer que P=(231342112) est inversible.
Ainsi, 0 est valeur propre ssi det(f)=0, ce qui revient à dire que f n'est pas inversible. 0 est valeur propre de f si et seulement s'il existe x non nul tel que f(x)=0.
Deux vecteurs propres d'une ma- trice symétrique réelle associés à deux valeurs pro- pres distinctes sont orthogonaux. Les vecteurs propres associés à λ2 sont définis par la seule condition: - x - y + 4 z = 0.
D'abord on trouve les valeurs propres en résolvant le polynôme caractéristique et ensuite on peut trouver les vecteurs propres qui y sont associés. Le polynôme caractéristique s'obtient en calculant le déterminant de la matrice A−λI. Par définition, un vecteur propre ne doit pas être égal au vecteur nul.
Soient u et v , deux vecteurs de coordonnées respectives (xy) et (x′y′). Le déterminant de u et v est le réel det(u ;v )=xy′−yx′. Propriété : Deux vecteurs sont colinéaires si, et seulement si, leur déterminant est nul. Le déterminant de u (−3 ;9) et v (1 ;−3) est det(u ;v )=(−3)×(−3)−9×1=0.
On trouve les coordonnées de chaque vecteur. On regarde si les coordonnées des vecteurs sont proportionnelles. Si les coordonnées sont proportionnelles, alors les vecteurs sont colinéaires. Si les coordonnées ne sont pas proportionnelles, alors les vecteurs ne sont pas colinéaires.
Étymologiquement, colinéaire signifie sur une même ligne : en géométrie classique, deux vecteurs sont colinéaires si on peut en trouver deux représentants situés sur une même droite. sont parallèles. Cette équivalence explique l'importance que prend la colinéarité en géométrie affine.