Théorème (admis) Pour tout réel k compris entre ƒ(a) et ƒ(b), il existe au moins un réel c appartenant à l'intervalle [a ; b] tel que ƒ(c) = k. Autrement dit, pour tout réel k compris entre ƒ(a) et ƒ(b), l'équation ƒ(x) = k admet au moins une solution dans l'intervalle [a ; b].
En utilisant le corollaire du théorème des valeurs intermédiaires (c'est-à-dire le théorème appliqué au cas des fonctions strictement monotones), on peut montrer qu'une équation admet une unique solution sur un intervalle. Montrer que l'équation x^3-2x+1=0 admet une unique solution sur \left]-\infty ; -1 \right].
Si la fonction f ( x , y ) admet des dérivées partielles (par rapport à et ) qui sont continues, et si l'on se fixe des réels et , il existe une solution et une seule de l'équation y ′ = f ( x , y ) , définie sur un intervalle contenant , qui vérifie u ( x 0 ) = y 0 .
On calcule le discriminant Δ = b2 – 4ac de la fonction polynôme f définie par f(x) = ax2 + bx + c. Étudier le signe du discriminant Δ. Si Δ < 0, alors cette équation n'admet pas de solutions réelles. Si Δ = 0, alors cette équation admet une solution unique .
Si k \notin J_i alors l'équation f\left(x\right) = k n'admet pas de solution sur I_i. Si k \in J_i alors d'après le corollaire du théorème des valeurs intermédiaires, l'équation f\left(x\right) = k admet une unique solution sur I_i.
Voici quelques exemples d'équations impossibles :
x + 1 = x Cette équation est impossible car quelle que soit la valeur de x, on ne peut jamais obtenir l'égalité. En soustrayant x des deux côtés, on obtient 1 = 0, ce qui est une contradiction.
Si tous les coefficients aij sont nuls, et si l'un au moins des bi est non nul, alors le système n'admet pas de solution : S = ∅. Si l'un des coefficients aij est non nul, on peut le choisir comme pivot.
Si les droites sont parallèles entre elles, on aura plutôt une infinité de solution si elles sont confondues, ou l'absence de solution si elles sont disjointes. On peut résoudre un système d'équations linéaires de plusieurs façons.
Un système d'équation se traduit par le produit matriciel AX = B. Ce système admet une unique solution si A est inversible : X = A-1B.
f(x) = x + 1/x n'a pas de limite quand x tend vers + l'infini. Elle a une asymptote mais qui n'est pas verticale. la limite de f quand x tend vers … ce qu'on veut, n'existe pas.
Pour déterminer la solution de l'équation, il faut remplacer l'inconnue par chacune des valeurs proposées et voir celle pour laquelle l'égalité est vérifiée.
Afin de valider la solution trouvée, il suffit de remplacer l'inconnue dans l'équation de départ par la solution trouvée. L'égalité est vérifiée ce qui confirme que la solution de l'équation est bel et bien x=58. x = 5 8 .
On dit que I est un intervalle si, pour tous x<y appartenant à I, pour tout z∈R z ∈ R avec x<z<y, x < z < y , alors z est élément de I. I . Autrement dit, les intervalles de R sont les parties convexes de R.
Exemple : l'intervalle [ 2 ; 5 ] est l'ensemble des nombres réels x tels que 2 ≤ x, et x ≤ 5. Bornes incluses ou exclues. On va faire des distinguos importants selon que les bornes appartiennent à l'intervalle (comme ci-dessus) ou non : [ -1 ; 3 ] = l'ensemble des réels x tels que -1 ≤ x ≤ 3.
Pour déterminer le sens de variation d'une fonction f , on étudie le signe de sa dérivée : f ′ ( x ) . Pour interpréter ce signe : Si f ′ ( x ) a le signe + sur un intervalle, alors f est croissante sur cet intervalle. Si f ′ ( x ) a le signe - sur un intervalle, alors f est décroissante sur cet intervalle.
Si une fonction f est définie, continue et strictement monotone sur un intervalle [ a ; b ] [a; b] [a;b] alors, pour tout réel k compris entre f ( a ) f(a) f(a) et f ( b ) f(b) f(b), l'équation f ( x ) = k f(x)=k f(x)=k a une unique solution dans l'intervalle [ a ; b ] [a; b] [a;b].
La méthode consiste à rendre ce système triangulaire en effectuant des combinaisons linéaires : . On conserve la ligne 1 puis on élimine x dans les deux autres équations en effectuant une combinaison linéaire entre la ligne 1 et la ligne 2, puis la ligne 1 et la ligne 3.
Les systèmes d'équations du premier degré à deux ou trois inconnues n'ont aucune solution, une seule solution, ou ont une infinité de solutions. Pour résoudre un système d'équations du premier degré, il existe deux méthodes : une méthode dite « par substitution » et une méthode dite « par combinaison ».
Un système de deux équations du premier degré a une infinité de solutions si et seulement si les deux équations sont équivalentes.
La méthode du pivot consiste d'abord à amener le système à un système triangulaire, ceci uniquement par opérations élémentaires sur les lignes. On suppose que la première colonne n'est pas identiquement nulle (sinon l'inconnue x1 n'apparait pas!), ainsi quitte à permuter les lignes, on suppose que a11 = 0.
L'hypothèse de Riemann, un problème irrésolu
Les énigmes de maths passionnent les gens depuis des générations ! Ce problème est considéré par de nombreux mathématiciens comme l'un des plus difficiles de tous les temps. Et en effet, l'hypothèse de Riemann n'a jamais été résolue !
Appellé «le dernier théorème de Fermat», cette équation avait été posé en 1637 par le mathématicien français Pierre Fermat. Il l'avait formulée ainsi : «il n'existe pas de nombres entiers non nuls x, y et z tels que : xn + yn = zn, dès que n est un entier strictement supérieur à 2».
L'équation de Drake.