On dit que est intégrable au sens de Riemann ( ou Riemann intégrable sur ) si : s [ a , b ] ( f ) = S [ a , b ] ( f ) . On note alors ce nombre ∫ a b f ( t ) d t intégrale définie de sur l'intervalle .
est Riemann-intégrable si et seulement si l'ensemble de ses points de discontinuité a une mesure de Lebesgue nulle. L'ensemble des discontinuités peut être de mesure nulle sans être fini ou dénombrable, comme pour la fonction caractéristique de l'ensemble de Cantor, qui n'est donc pas réglée.
Si I est un intervalle borné, toute fonction continue par morceaux et bornée sur I est intégrable sur I. En particulier, si f admet une limite finie aux bornes de I, alors f est intégrable sur I. g(t). Alors f est intégrable au voisinage de t0 si, et seulement si, g est inté- grable au voisinage de t0.
si f(x)∼bg(x) f ( x ) ∼ b g ( x ) et si g garde un signe constant au voisinage de b , l'intégrabilité de g sur I est équivalente à celle de f .
Définition : Une fonction localement intégrable sur est une fonction intégrable sur tout intervalle fermé borné contenu dans . Par exemple si I = [ a , + ∞ [ cela signifie que, pour tout , l'intégrale existe ∫ a x f ( t ) d t , ou encore que la fonction F : x ↦ ∫ a x f ( t ) d t est définie sur l'intervalle .
f est dite intégrable sur [a, b] si et seulement si I[a,b](f) = I[a,b](f) (pincement).
Critères d'intégrabilité
Une fonction réglée est intégrable sur un intervalle fermé. En particulier on en déduit que les fonctions continues, continues par morceaux, monotones ou encore à variations bornées sont toutes intégrables sur un intervalle fermé.
Théorème (théorème fondamental du calcul intégral) : Si f est une fonction continue et positive sur [a,b] , alors la fonction F définie sur [a,b] par F(x)=∫xaf(t)dt F ( x ) = ∫ a x f ( t ) d t est dérivable sur [a,b] , et a pour dérivée f .
Une intégrale impropre est convergente si sa valeur est finie, dans le cas contraire elle est divergente.
Toute fonction en escalier est bornée car elle ne prend qu'un nombre fini de valeurs. Si f est réglée, il existe ϕ en escalier telle que, pour tout x ∈ [a, b], |f(x) − ϕ(x)| ≤ 1, et donc |f(x)|≤|ϕ(x)| + 1, ce qui prouve que f est bornée.
Une application f : [a, b] → E est dite en escalier s'il existe une subdivision σ = (x0 = a, x1,...,xn−1,xn = b) de [a, b] telle que f soit constante sur chacun des intervalles ouverts ]xi−1,xi[ (1 ≤ i ≤ n).
L'intégrale est une forme linéaire sur cet espace. Nous introduisons la notion de convergence simple et de convergence uniforme d'une suite de fonctions.
Si la fonction est positive sur l'intervalle d'intégration, l'intégrale est positive et donc I_{n+1}-I_{n} est positif. Si la fonction est négative sur l'intervalle d'intégration, l'intégrale est négative et donc I_{n+1}-I_{n} est négatif.
L'énoncé de l'hypothèse de Riemann généralisée est le suivant : Pour tout caractère de Dirichlet χ, si s est un nombre complexe tel que L(χ, s) = 0 et si sa partie réelle est strictement comprise entre 0 et 1, alors elle vaut en fait 1/2.
En pratique, elles permettent de calculer numériquement des aires sous la courbe de fonctions ou des longueurs d'arcs, ou inversement, de donner une valeur à des suites de sommes. Elles peuvent également être utilisées pour définir la notion d'intégration. Leur nom vient du mathématicien allemand Bernhard Riemann.
somme de Darboux inférieure associée à et le nombre s [ a , b ] ( f , σ ) = ∑ i = 1 n m i ( x i − x i − 1 ) .
Intégrale et primitives
L'intégrale de la fonction nulle est nulle sur tout intervalle inclus dans l'ensemble des réels ; les primitives de la fonction nulle (sur ℝ) sont donc les fonctions constantes.
Définition : Soit une fonction réelle, localement intégrable sur un intervalle , avec ω ∈ R ou . On dit que l'intégrale ∫ a ω f ( t ) d t est absolument convergente si l'intégrale ∫ a ω | f ( t ) | d t est convergente.
S n = ∑ k = 0 n u k . On dit que la série ∑un ∑ u n converge si la suite de ses sommes partielles (Sn) est convergente. On dit qu'elle diverge dans le cas contraire. Dans le cas de la convergence, on note +∞∑k=0uk=limn→+∞Sn.
Une fonction f:I→R f : I → R est donc dérivable en a si et seulement s'il existe α∈R α ∈ R et une fonction ε définie dans un intervalle J ouvert contenant 0 , vérifiant limh→0ε(h)=0 lim h → 0 ε ( h ) = 0 tels que ∀h∈J, f(a+h)=f(a)+αh+hε(h). ∀ h ∈ J , f ( a + h ) = f ( a ) + α h + h ε ( h ) .
Une fonction réelle d'une variable réelle est dérivable en un point a quand elle admet une dérivée finie en a, c'est-à-dire, intuitivement, quand elle peut être approchée de manière assez fine par une fonction affine au voisinage de a.
Il s'agit en fait d'une propriété générale : une fonction n'est pas dérivable aux points où elle n'est pas continue. Pour cet exemple, la solution la plus efficace aurait ainsi été de montrer d'abord que la fonction n'était pas continue et donc pas dérivable.
On retiendra qu'une intégrale peut être positive ou négative mais qu'une aire, elle, est toujours positive.
Définition : Soit f une fonction bornée sur [a,b] . Alors f est Riemann intégrable si et seulement l'une des conditions équivalentes suivante est vérifiée : S−(f)=supσS−(f,σ) S − ( f ) = sup σ S − ( f , σ ) et S+(f)=infσS+(f,σ) S + ( f ) = inf σ S + ( f , σ ) sont égales.
Si la fonction f est impaire, sa courbe représentative est symétrique par rapport à l'origine. L'intégrale entre a et -a est nulle car l'aire comprise entre -a et 0 aura un signe moins alors que celle entre 0 et a aura la même valeur mais avec un signe +.