Une matrice est injective si son
Caractérisation des applications linéaires injectives et surjectives. Soit une application linéaire du vectoriel dans le vectoriel , l'application est surjective si et seulement si son image est égale à l'espace . l'application est injective si et seulement si son noyau ne contient que le vecteur nul.
Si ta matrice est inversible, celà signifie qu'elle est de rang n. D'après le théorème du rang, le noyau de ton endomorphisme est réduit à {0}, c'est à dire qu'il est injectif. De plus on est en dimension finie, donc ton endomorphisme est bijectif.
Remarque. Pour montrer qu'un endomorphisme f ∈ L(E) est bijective, il suffit de montrer que f est injectif (en montrant par exemple que Ker(f) = {0E}) ou que f est surjectif (en montrant Im(f) = F).
Une matrice est injective si son noyau est réduit à 0. Une matrice est surjective si son rang est égal à la dimension de l'espace d'arrivée.
Une condition nécessaire et suffisante pour qu'une application linéaire de dans soit un automorphisme est que la matrice associée à dans une base quelconque de soit inversible. De plus, si est un automorphisme de et si A = [ f ] B E , la matrice de dans la base est égale à , inverse de la matrice .
Une matrice réelle dont toutes les colonnes sont orthogonales deux à deux est inversible si et seulement si elle n'a aucune colonne nulle. Un produit de deux matrices carrées est inversible si et seulement si les deux matrices en facteur le sont aussi.
Méthode n°2 : Une matrice A est inversible si et seulement si la famille formée par ses vecteurs colonnes est libre. Autrement dit, si vous remarquez une combinaison linéaire entre les vecteurs colonnes de la matrice A, alors cette famille est liée, donc elle n'est pas libre, donc A n'est pas inversible.
Définition: Une fonction f de E vers F est injective si et seulement si tout élément de F possède au plus un antécédent dans E. Définition: une fonction f de E vers F est surjective si et seulement si tout élément de F possède au moins un antécédent dans E.
On appelle noyaude la matrice A, noté Ker (A) , l'ensemble des matrices colonnes X ∈ Mq,1(R) telles que AX = (0)p×1 .
Trouver la dimension du noyau de f := (x,y,z,t) ↦→ (x + 5y + 7t,2x + 4y + 6z + t). C'est plus facile que trouver une base : c'est la dimension de départ diminué du rang de la matrice. Trouver la dimension du noyau de f := (x,y,z,t) ↦→ (x − y + z + t,−x + y − z + t,t).
Théorème de la bijection entre segments — Si f est une fonction continue et strictement monotone sur un intervalle [a, b] et à valeurs réelles, alors elle constitue une bijection entre [a, b] et l'intervalle fermé dont les bornes sont f(a) et f(b).
- Pour montrer que f est injective, il faut démontrer que pour tout y E, l'équation d'inconnue x E : f(x)=y possède au plus une solution. - Pour montrer que f est surjective, il faut démontrer que pour tout y E, l'équation d'inconnue x E : f(x)=y possède au moins une solution.
1. L'application f est bijective si et seulement si il existe une application g : F → E telle que f ◦ g = idF et g ◦ f = idE. 2. Si f est bijective alors l'application g est unique et elle aussi est bijective.
Soit A une matrice carrée d'ordre n. On dit que A est une matrice inversible s'il existe une matrice B carrée d'ordre n vérifiant la double égalité : A B = B A = In avec In, la matrice identité d'ordre n. B est une matrice inverse si B = A-1. La notion de matrices inverses ne concerne que les matrices carrées.
Pour inverser une matrice à deux lignes et deux colonnes, il faut : échanger les deux coefficients diagonaux. changer le signe des deux autres. diviser tous les coefficients par le déterminant.
Une matrice A de Mn(K) M n ( K ) est dite inversible s'il existe B∈Mn(K) B ∈ M n ( K ) tel que AB=BA=In. A B = B A = I n . Une matrice B vérifiant la relation précédente est unique, elle s'appelle matrice inverse de A et se note A−1 .
Définition 1 : Une matrice A ∈ Mn(R) est dîte inversibles'il existe une matrice B ∈ Mn(R) telle que : AB = In et BA = In Si B existe, elle est appelée inverse de A et notée A−1.
Pour cela, multipliez M et M-1. La théorie veut que : M x M-1 = M-1 x M = I, I étant la matrice identité, c'est-à-dire une matrice dans laquelle la diagonale est constituée de 1, les autres valeurs étant des 0.
1. Une matrice A est diagonalisable si et seulement si la somme des dimensions des sous-espaces propres est égale à l'ordre de la matrice. 2. Si une matrice carrée A d'ordre n admet n valeurs propres différentes, alors A est diagonalisable.
f est un automorphisme de groupes si f est un isomorphisme et si G=G′ (même groupe au départ et à l'arrivée). Le noyau de f , noté kerf , est l'ensemble des x de G tels que f(x)=1G′ f ( x ) = 1 G ′ .
− Un endomorphisme d'un espace vectoriel E est une application linéaire de E dans E. − Un isomorphisme de E sur F est une application linéaire bijective. − Un automorphisme est un endomorphisme bijectif. − Une forme linéaire sur E est une application linéaire de E sur K.
Définition 2.7 Si un morphisme de groupes f : G → G est bijectif, on dit que c'est un isomor- phisme. Si de plus G = G, on dit que f est un automorphisme de G.