Alors n'oubliez pas SOH CAH TOA. Sin = Opposé / Hypoténuse (S.O.H.) Cos = Adjacent / Hypoténuse (C.A.H.)
Dans un triangle rectangle, le cosinus d'un angle est égal au rapport de la longueur du côté adjacent à cet angle sur la longueur de l'hypoténuse.
Dans un triangle quelconque, relation qui permet d'établir que le carré d'un côté est égal à la somme des carrés des deux autres côtés moins deux fois le produit de ces côtés par le cosinus de l'angle qu'ils forment. Dans le triangle ABC ci-dessous, la loi du cosinus prend les trois formes suivantes : a2=b2+c2–2bccosα
Trigonométrie Exemples
La valeur exacte de cos(45) est √22 . Le résultat peut être affiché en différentes formes.
Trigonométrie Exemples
La valeur exacte de cos(90) est 0 .
Sin = Opposé / Hypoténuse (S.O.H.) Cos = Adjacent / Hypoténuse (C.A.H.)
Trigonométrie Exemples
La valeur exacte de cos(30°) cos ( 30 ° ) est √32 . Le résultat peut être affiché en différentes formes.
cos 12° 0,978 ; cos 20° 0,94 ; cos 45° 0,707 ; cos 60° = 0,5 cos 90° = 0 ; cos 0° = 1.
Soit racine carrée de trois sur deux. Ensuite, le cosinus de 60 degrés est égal à la longueur du côté adjacent sur la longueur de l'hypoténuse. Cela fait un sur deux ou un demi. Enfin, la tangente de 60 degrés est égale à la longueur du côté opposé sur la longueur du côté adjacent.
Le rapport trigonométrique cosinus ne s'utilise qu'avec les angles aigus d'un triangle rectangle. Ainsi, on ne cherche jamais le cosinus à partir de l'angle droit.
Par exemple, les fonctions Sinus et Cosinus permettent de décrire les sons produits par les instruments de musique. La trigonométrie est donc une base pour étudier la musique et l'harmonie des sons ! Plus généralement, les fonctions de trigonométrie servent pour décrire la propagation de toutes sortes d'ondes.
Considérons un triangle 𝐴 𝐵 𝐶 rectangle en 𝐴 . Dans le triangle initial, le côté 𝑎 est l'hypoténuse et le côté opposé à l'angle 𝐵 est le côté 𝑏 . Ainsi, le sinus de l'angle 𝐵 est égal à la longueur du côté opposé divisé par la longueur de l'hypoténuse.
On appelle formule d'Al-Kashi, ou loi des cosinus, ou encore théorème de Pythagore généralisé l'égalité suivante, valable dans tout triangle ABC A B C , qui relie la longueur des côtés en utilisant le cosinus d'un des angles du triangle : a2=b2+c2−2b⋅ccos(ˆA).
On peut donc écrire que le sinus de 30 degrés est égal au côté opposé — c'est 𝑏 — divisé par l'hypoténuse — c'est 𝑐. Puisqu'on a ces valeurs, on peut remplacer 𝑏 par un et 𝑐 par deux, ce qui donne que le sinus de 30 degrés est égal à un sur deux, ou un demi.
Le sinus. Le sinus s'utilise aussi dans les triangles rectangles. Dans le cas d'un triangle rectangle ABC rectangle en B, le sinus de l'angle A est égal à la longueur du côté opposé à l'angle A divisée par la longueur de l'hypoténuse, donc sin A = BC/AC.
Le sinus de l'angle droit donne Opposé / Hypoténuse soit Hypoténuse / Hypoténuse = 1.
Trigonométrie Exemples
La valeur exacte de cos(0) est 1 .
La valeur exacte de sin(90°) sin ( 90 ° ) est 1 .
sin(10°) ≈ 0,174 (en descendant : troisième colonne en partant de la gauche) ; sin(50°) ≈ 0,766 (en montant : troisième colonne en partant de la droite).
Appliquez l'angle de référence en trouvant l'angle avec des valeurs trigonométriques équivalentes dans le premier quadrant. Rendez l'expression négative car le sinus est négatif dans le quatrième quadrant. La valeur exacte de sin(45) est √22 .
Dans un triangle rectangle, on appelle le cosinus d'un angle aigu le quotient de la mesure de la longueur du côté adjacent à cet angle par celle de l'hypoténuse du triangle.
Calcul du sinus
Le résultat est : sin 50° = 0,766 (au millième près). Remarque : la démarche est la même pour calculer un cosinus ou une tangente.