Le déterminant d'une matrice diagonale ou triangulaire (supérieure ou inférieure) est égal au produit des termes de la diagonale principale. Comme pour les déterminants d'ordre 2, la valeur du déterminant est égale au produit des termes de la diagonale principale.
Le déterminant se calcule en multipliant les deux termes de la diagonales : a x d, puis les deux autres : b x c. On soustrait alors, ce qui donne det(A) = a x d – b x c. Rien de bien compliqué, il faut juste connaître la formule ! Autre cas particulier très simple : les matrices diagonales et triangulaires.
Trois cofacteurs, un pour chaque coefficient d'une seule ligne (ou colonne), que vous additionnez et vous aurez le déterminant de la matrice 3 x 3. Pour notre exemple, cela donne : (-34) + (120) + (-12) = 74.
La règle de Sarrus (nommée d'après Pierre-Frédéric Sarrus) est un procédé visuel, qui permet de retenir la formule de calcul des déterminants d'ordre 3. La règle de Sarrus consiste à écrire les trois colonnes de la matrice et à répéter, dans l'ordre, les deux premières lignes en dessous de la matrice.
Si dans une matrice on ajoute à une ligne un multiple d'une autre ligne, le déterminant ne change pas. Si A est une matrice carrée d'ordre n, on a det(A)=det(At). Si A et B sont des matrices carrées d'ordre n, on a det(A⋅B)=det(A)⋅det(B).
Définition : Soit (→i,→j) une base orthonormée, Soient →u(x1y1) et →v(x2y2) deux vecteurs exprimés dans cette base, On appelle déterminant des deux vecteurs →u et →v le réel x1y2−y1x2.
La règle de Sarrus nous fournit un moyen de calculer le déterminant sans avoir à calculer les mineurs ou les cofacteurs. Notons, cependant, que le nombre de calculs que nous devons faire est sensiblement le même, sauf qu'il peut être plus facile de se souvenir de cette méthode.
Comatrice de la comatrice : si n ≥ 2, com(comA) = (detA)n–2 A. Si P(X) = det(A – X In) est le polynôme caractéristique de A et si Q est le polynôme défini par Q(X) = (P(0) – P(X))/X, alors : t(comA) = Q(A).
Pour diagonaliser une matrice, une méthode de diagonalisation consiste à calculer ses vecteurs propres et ses valeurs propres. La matrice diagonale D est composée des valeurs propres. La matrice inversible P est composée des vecteurs propres dans le même ordre de colonnes que les valeurs propres associées.
Définition : Si A est une matrice carrée (ai,j)1≤i,j≤n ( a i , j ) 1 ≤ i , j ≤ n , les mineurs principaux sont les déterminants des matrices tronquées (ai,j)1≤i,j≤k ( a i , j ) 1 ≤ i , j ≤ k , pour k allant de 1 à n .
Comment calculer les vecteurs propres d'une matrice ? Pour trouver/déterminer des vecteurs propres , prendre M une matrice carré d'ordre n et λi ses valeurs propres. Les vecteurs propres sont les solutions du système (M−λIn)→X=→0 ( M − λ I n ) X → = 0 → avec In la matrice identité.
Il suffit de rentrer chaque matrice de façon "naturelle" élément par élément, séparé d'un espace en effectuant un saut de ligne à chaque fin de ligne de la matrice. Vous pouvez entrer des entiers relatifs et des fractions de la forme -3/4 par exemple.
Utiliser la réduction linéaire par rangées pour trouver une matrice inverse. Accolez la matrice identité à votre matrice. Inscrivez sur votre feuille la matrice de départ M sans l'accolade de droite, tirez un trait vertical à droite de celle-ci, inscrivez la matrice identité et fermez l'accolade.
1.1.
En dimension 2, le déterminant est très simple à calculer : det a b c d = ad − bc. C'est donc le produit des éléments sur la diagonale principale (en bleu) moins le produit des éléments sur l'autre diagonale (en orange).
On résout ( S ) par la méthode du pivot de Gauss. On a donc pour toutes matrices X et Y de M 3 , 1 ( R ) l'équivalence A X = Y ⇔ X = A ′ Y . On a donc pour toute matrice Y de M 3 , 1 ( R ) , Y = A A ′ Y on en déduit A A ′ = I 3 . De même pour toute matrice X de M 3 , 1 ( R ) , X = A ′ A X et donc A ′ A = I 3 .
Pour inverser une matrice à deux lignes et deux colonnes, il faut : échanger les deux coefficients diagonaux. changer le signe des deux autres. diviser tous les coefficients par le déterminant.
Comment calculer les mineurs d'une matrice ? Pour une matrice carrée d'ordre 2, trouver les mineurs c'est calculer la matrice des cofacteurs sans les coefficients. Pour les matrices de taille supérieure comme 3x3, calculer les déterminants de chaque sous-matrice.
Définition : On appelle discriminant du trinôme ax2 + bx + c , le nombre réel, noté A, égal à b2 − 4ac . Exemple : Le discriminant de l'équation 3x2 − 6x − 2 = 0 est : ∆ = (-6)2 – 4 x 3 x (-2) = 36 + 24 = 60.
Si la matrice n'est pas carré, elle n'est pas inversible ! et le déterminant d'une matrice non carrée n'existe pas ! 2) Si A est inversible (et donc carrée) alors l'inverse de A s'écrit A^-1 et A*A^-1 = identité.
Une matrice réelle dont toutes les colonnes sont orthogonales deux à deux est inversible si et seulement si elle n'a aucune colonne nulle. Un produit de deux matrices carrées est inversible si et seulement si les deux matrices en facteur le sont aussi.
La norme du vecteur est donnée dans un repère orthonormé par la formule suivante : √(x² + y²) ou √(x² + y² + z²). * Pour calculer la norme d'un vecteur du plan, laissez la case z vide. Exemples : Calculons la norme du vecteur du plan de coordonnées (5;12).
Définition de colinéaire adjectif
Mathématiques Vecteurs colinéaires, qui ont la même direction.
Étymologiquement, colinéaire signifie sur une même ligne : en géométrie classique, deux vecteurs sont colinéaires si on peut en trouver deux représentants situés sur une même droite. sont parallèles.