Décomposer un nombre, c'est indiquer la position (la classe et le rang) de chacun des chiffres qui composent ce nombre. 42 603 = 4 × 10 000 + 2 × 1 000 + 6 × 100 + 3 × 1.
Il suffit ensuite de lire les chiffres correspondant à chaque rang pour trouver la décomposition du nombre. Je veux décomposer le nombre 264321. On peut aussi écrire : 264 321 = (2 × 100 000) + (6 × 10 000) + (4 × 1 000) + (3 × 100) + (2 × 10) + 1.
Décomposer un nombre en facteurs premiers, c'est chercher un produit de facteurs premiers qui soit égal à ce nombre. Pour décomposer un nombre en ses facteurs premiers, on commence à le diviser par le plus petit de ses facteurs premiers, on fait la même chose pour le quotient obtenu, puis sur le deuxième quotient, etc.
Première méthode : décomposition des nombres en facteurs premiers On a vu à la question 1. a que : 780 = 22 × 3 × 5 × 13 et 504 = 23 × 32 × 7.
Par exemple si j'écris : 15 = 3 x 5 j'ai décomposé 15 en produit de facteurs premiers car j'ai écrit 15 comme le produit de deux nombres premiers. En effet 3 et 5 sont dans la liste.
Le nombre 588 peut se décomposer sous la forme 588 = 22 ×3×72.
Le ppcm = 2²×3²×5 = 180. Décomposition d'un nombre en produits de facteurs premiers : Pour connaître si un nombre est premier, on divise successivement par les nombres premiers pris dans l'ordre croissant : 2 ; 3 ; 5 ; 7 ; 11 ...
Qu'est-ce que la décomposition du nombre 20 ? Décomposer le nombre 20, c'est écrire le nombre 20 avec des additions comme dans : 20 = 10 + 10.
140 a des facteurs de 2 et 70 . 70 a des facteurs de 2 et 35 . 35 a des facteurs de 5 et 7 .
126 = 2 × 63 = 2 × 2 × 6 75 = 3 × 25 = 2 × 2 × 2 × 3 63 n'est pas divisible par 2. 25 n'est pas divisible par 3. 3 est un nombre premier.
La factorisation entière en nombres premiers, appelée aussi décomposition en produit de facteurs premiers, consiste à écrire un nombre comme produit de nombres premiers. Par exemple, 12 peut être écrit comme 2*2*3 ou 16 peut être écrit comme 2*2*2*2.
Par exemple, si le nombre donné est 45, la factorisation en nombres premiers est 32 × 5, soit 3 × 3 × 5.
Le nombre 36 peut être donc décomposé en produit de facteurs premiers 2, 2, 3, 3.
Donc 18 = 2*3*3.
500 = 5 centaines, 0 dizaine et 0 unité.
6 + 4 = 10.
Exercice 42 a) 7×8×4 n'est pas la décomposition en produit de facteurs premiers de 224 car 4 et 8 ne sont pas premiers b) 224=7×8×4=7×2×2×2×2×2=7×25 7×25 est la décomposition en produit de facteurs premiers de 224 car 2 et 7 sont premiers.
75 = 25 + 25 + 25.
Il existe une méthode pour décomposer : exemple : décomposons 84 : Je divise par les nombres premiers : 2-3-5-7-11-13…..
70 = 35 + 35. 75 = 25 + 25 + 25.
Tout nombre entier supérieur ou égal à 2 est décomposable en un produit de nombres premiers, unique à l'ordre près des facteurs. Exemples : 32 = 2x2x2x2x2. 34 = 2x17.
144 = 1 x 125 = 1 x 53.
La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 540) est la suivante : 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 27, 30, 36, 45, 54, 60, 90, 108, 135, 180, 270, 540. Pour que 540 soit un nombre premier, il aurait fallu que 540 ne soit divisible que par lui-même et par 1.
120 = 30 × 4.