Factoriser une expression, c'est transformer une somme ou une différence en un produit. Il faut donc à la base avoir au moins deux termes que l'on additionne ou soustrait. Par exemple dans 8x + 5, les deux termes sont 8x et 5. Dans 6(x+4)2 – 9, les deux termes sont 6(x+4)2 et 9.
Pour factoriser une somme, il faut repérer le facteur commun aux différents termes de la somme. A : le facteur commun est x ; si l'on développe x(x − 5), on retrouve bien x2 − 5x. B : le facteur commun est 2x ; si l'on développe 2x(x − 3 + y), on retrouve bien 2x2− 6x + 2xy.
Action de la mettre sous la forme de facteurs, un facteur étant un nombre (ou un groupe de nombres) qui multiplie un ou plusieurs autres nombres (ou groupes de nombres). Transformer une somme algébrique en un produit. Exemple : La factorisation doit mettre en évidence au moins 2 expressions multipliées.
Définition : Factoriser une expression, c'est transformer une somme ou une différence en produit.
Factoriser une expression littérale, c'est transformer une somme ou une différence en un produit, c'est l'inverse du développement. A = 5 × ( x + 3 ) On écrit entre parenthèses les deux autres facteurs. Si les produits ne sont pas apparents, il faut les faire apparaître.
Factoriser un polynôme du second degré consiste à l'écrire sous la forme d'un produit de polynôme du premier degré. Ce n'est possible que si la fonction polynôme possède 1 ou 2 racines. Une fonction polynôme de degré 2 s'écrit sous la forme où , , sont des réels avec .
Pour factoriser une expression de la forme a²+2ab+b², on utilise l'identité remarquable (a+b)². Par exemple, x²+10x+25 peut être écrit sous la forme (x+5)². Cette méthode est basée sur la reconnaissance de l'identité remarquable (a+b)²=a²+2ab+b² (qu'on peut toujours vérifier en développant le produit (a+b)(a+b)).
Une expression factorisée est l'écriture d'un produit. L'expression factorisée est 2 × (L + l). 2 × (a + b − 2) = 2 × a + 2 × b − 2 × 2 = 2a + 2b - 4. 5 + 15a + 5 = 5 × 9 + 5 × 3a + 5 × 1 = 5 × (9 + 3a + 1).
Pour factoriser il faut trouver un facteur commun, le plus simple est surement un exemple : 12 et 6 ont pour facteur commun 3, car 3x4=12 et 3x2=6, dans les formules on prend pour facteur commun K pour montrer aussi que ça peut être n'importe quel réel ( de moins l'infini à plus l'infini).
Réduire une expression signifie l'écrire sous la forme la plus simple possible, que l'on appellera la forme réduite, c'est-à-dire regrouper les termes possédant les mêmes lettres affectées des mêmes exposants. Pour réduire B, il suffit de « compter les » ! Il y en a 7 et 3, donc 10 en tout !
Factoriser une expression numérique ou littérale, c'est l'écrire sous la forme d'un produit. L'expression (3x – 7)(2x + 4) est factorisée car elle n'est composée que d'un seul terme qui comporte deux facteurs. Les expressions possèdent deux termes (séparés par un + ou un – ) comportant chacun deux facteurs.
La méthode la plus élémentaire pour factoriser un entier n consiste à prendre tous les entiers inférieurs à n, et à tester s'ils divisent n(=algorithme de force brute). C'est bien sûr un algorithme inutilisable si n est grand.
Simplification des fractions : réduire les fractions en simplifiant le numérateur et le dénominateur. Par exemple, 4x/2 peut être réduit à (2x). Factorisation : factoriser les expressions en trouvant des facteurs communs. Par exemple, (3x + 6) peut être factorisé en (3(x + 2)).
Factoriser une expression littérale, c'est transformer une somme ou une différence en un produit, c'est l'inverse du développement. A = 5 × ( x + 3 ) On écrit entre parenthèses les deux autres facteurs. Si les produits ne sont pas apparents, il faut les faire apparaître.
Si \Delta=0, on peut factoriser f(x) sous la forme f(x)=a(x-x_0)^2, avec x_0 la racine double de f. Si \Delta>0, on peut factoriser f(x) sous la forme f(x)=a(x-x_1)(x-x_2), avec x_1 et x_2 les deux racines de f.
Si Δ = 0 alors l' équation admet une solution double x = −b/2a. Si Δ >0 alors l' équation admet deux solutions distinctes x' et x' telles que: x' =( −b + √Δ ) / 2a et x'' =(
Factoriser une expression, c'est transformer une somme ou une différence en un produit. Il faut donc à la base avoir au moins deux termes que l'on additionne ou soustrait. Par exemple dans 8x + 5, les deux termes sont 8x et 5. Dans 6(x+4)2 – 9, les deux termes sont 6(x+4)2 et 9.
On calcule la valeur d'une expression littérale lorsque l'on attribue une valeur aux lettres contenues dans l'expression. Si une même lettre est utilisée plusieurs fois, on lui attribue le même nombre à chaque fois. Exemple 1 : Calculer l'expression A = 5 × ( 6 − x ) + 3 x − 7 y lorsque et .
Calculer la valeur d'une expression littérale, c'est attribuer un nombre à chaque lettre de l'expression afin d'effectuer le calcul. Calculer A = − x2 + 3(x + 6) + 4y lorsque x = − 4 et y = − 8. A = − x2 + 3 × (x + 6) + 4 × y On écrit les signes × sous−entendus.
À titre d'exemple, pour factoriser la forme a² + 2ab + b², on utilise l'identité remarquable (a+b)².
Généralement, la factorisation permet de simplifier une expression algébrique afin de résoudre un problème plus facilement. Les facteurs obtenus après la factorisation sont des polynômes de degré inférieur (ou égal) au polynôme de départ.