Ordonner une expression littérale revient à écrire les termes dans l'ordre de puissances décroissantes ou croissantes de x. x = x1 et 1 = x0. Exemple : Ordonner l'expression 23x – 56 − 2x2. 23x – 56 − 2x2 n'est pas une expression ordonnée car elle est égale à 23x1 − 56x0 − 2x2.
Ordonner une expression composée d'additions et/ou de soustractions de termes, c'est écrire les termes dans l'ordre décroissant des exposants des variables apparaissant dans l'expression. Soustraire une expression revient à ajouter l'opposé de chacun des termes composant cette expression.
En mathématiques, pour ranger les nombres par ordre croissant, on peut utiliser le signe <, qui signifie « est plus petit que » ou encore « est inférieur à ». Pour ranger les nombres par ordre décroissant, on peut utiliser le signe >, qui signifie « est plus grand que » ou encore « est supérieur à ».
Pour parvenir à factoriser une expression en un produit de facteurs, il faut d'abord chercher si l'on peut isoler un facteur commun. Par exemple on va chercher le terme commun qui permet de multiplier le premier terme par la deuxième expression : 4x+20 par exemple, est égal à 2 x (2x + 10).
Réduire une expression signifie l'écrire sous la forme la plus simple possible, que l'on appellera la forme réduite, c'est-à-dire regrouper les termes possédant les mêmes lettres affectées des mêmes exposants. Pour réduire B, il suffit de « compter les �� » ! Il y en a 7 et 3, donc 10 en tout !
Pour simplifier l'écriture d'une expression littérale, on peut supprimer le symbole × devant une lettre ou une parenthèse. Remarque : On ne peut pas supprimer le signe × entre deux nombres. Exemple : Simplifie l'expression suivante : A = – 5 × x + 7 × (3 × x – 2) × (– 4).
Simplification d'une expression littérale : On peut simplifier les expressions en supprimant le signe si et seulement s'il est suivi d'une lettre (ou parenthèse) ou en utilisant les puissances.
1 - On factorise le numérateur et le dénominateur. 2 - On écrit à quelles conditions la fraction rationnelle existe. 3- On simplifie par les facteurs communs. 4- On écrit les conditions devenues "invisibles" du fait de cette simplification.
Réduire une expression littérale, c'est regrouper les termes « semblables » et effectuer les calculs. Les termes « semblables » sont ici ceux qui ne contiennent que la variable a. B = 5a − 7b − 2ab.
Par exemple, le produit 2 × 3 comporte deux facteurs 2 et 3, ou encore 3 × 7 × 12 admet 7 comme facteur. Dans la première multiplication, 2 est appelé le multiplicande car c'est lui qui est répété et 3 est appelé le multiplicateur car il indique combien de fois 2 doit être répété.
Détermination de l'ordonnée à l'origine : Il suffit de lire l'ordonnée du point d'intersection de la droite avec l'axe des ordonnées. L'équation est de la forme y = px + d. L'ordonnée à l'origine est 1. Donc d = 1.
– Un polynôme est dit ordonné par rapport aux puissances décroissantes ( croissantes) de la variable si les exposants des puissances de cette variable sont placés en ordre décroissant ( croissant ).
Les Parenthèses. Les Exposants. Les Multiplications et les Divisions (de la gauche vers la droite) Les Additions et les Soustractions (de la gauche vers la droite)
Une expression littérale est une expression comportant des nombres et des lettres. La formule 2 × (L + l) donne le périmètre d'un rectangle de longueur L et de largeur l. Une expression littérale est une expression comportant des nombres et des lettres.
Factoriser une expression littérale, c'est transformer une somme ou une différence en un produit, c'est l'inverse du développement. A = 5 × ( x + 3 ) On écrit entre parenthèses les deux autres facteurs. Si les produits ne sont pas apparents, il faut les faire apparaître.
Réduire une expression littérale c'est la transformer en une écriture moins volumineuse en additionnant les termes semblables. La règle est la suivante : Lorsque les parenthèses sont précédées du signe « + », on peut les supprimer. changer le signe de chacun des termes placés dans les parenthèses.
Simplification d'une expression littérale : On peut simplifier les expressions en supprimant le signe si et seulement s'il est suivi d'une lettre (ou parenthèse) ou en utilisant les puissances.
Deux expressions littérales sont égales si elles sont toujours égales, c'est-à- dire si elles sont égales quelles que soient les valeurs attribuées aux lettres. Pour prouver que deux expressions sont égales, on peut les développer et les réduire. Donc les deux expressions sont égales.
Factoriser c'est transformer une somme en produit en faisant apparaître son facteur commun. Réduire c'est effectuer dans une expression littérale des calculs possibles.
examiner s'il s'agit de sommes ou de produits et compter les termes respectivement les facteurs). Les trois méthodes de factorisation qu'il faut connaître sont : la mise en évidence, les produits (identités) remarquables et le groupement de termes.
Pour soustraire un polynôme à un autre, il faut additionner l'opposé de chacun des termes semblables du second polynôme à ceux du premier et réduire l'expression algébrique obtenue.
Dans une expression littérale composée d'additions et de soustractions, on peut supprimer des parenthèses précédées d'un signe – , en changeant chaque signe à l'intérieur de la parenthèse.
La réduction peut s'effectuer de deux manières : soit en additionnant ou en soustrayant les équations terme à terme. On additionnera lorsque les coefficients d'une des variables sont opposés et on soustraira lorsque les coefficients d'une des variables sont égaux.
Définition : Factoriser une expression, c'est transformer une somme ou une différence en produit.