Pour convertir un nombre décimal, il faut déplacer la virgule d'un (ou plusieurs) rang(s), et / ou rajouter un (ou plusieurs) 0.
Donc, en rassemblant les résultats, on obtient 101010.
Divisez le nombre de départ par la plus grande puissance de 8. Dans le nombre 98, le 9 indique qu'il y a 9 dizaines. Ce chiffre de 9 a été obtenu en divisant 98 par 101, soit 10. En base 8, le principe est le même, il faut diviser le nombre à convertir par la plus forte puissance.
Conversion binaire-décimal
Le premier rang (en partant de la droite) est le rang 0, le second est le 1, etc. Pour convertir le tout en décimal, on procède de la manière suivante : on multiplie par 20 la valeur du rang 0, par 21 la valeur du rang 1, par 22 la valeur du rang 2, [...], par 210 la valeur du rang 10, etc.
Le système binaire (du latin binārĭus, « double ») est le système de numération utilisant la base 2. On nomme couramment bit (de l'anglais binary digit, soit « chiffre binaire ») les chiffres de la numération binaire positionnelle. Un bit peut prendre deux valeurs, notées par convention 0 et 1.
Utiliser la fonction bin() pour convertir un int en binaire en Python. En Python, vous pouvez utiliser une fonction intégrée, bin() pour convertir un entier en binaire. La fonction bin() prend un entier comme paramètre et retourne sa chaîne binaire équivalente préfixée par 0b .
La conversion du nombre 149(10) (en décimal) en binaire est donc : 1001 0101(2).
De même, quel serait le code d'un nombre de 8 bits pour représenter la valeur –1 ? Le code 1111 1111(2) = FF(16) convient puisque, si on ajoute 1 à ce nombre, on obtient 00000000(2) = 00(16), le bit de report déborde à gauche, il sort de l'espace qui est réservé au nombre et est donc ignoré.
Énumération des premiers nombres
On y trouvre 32, 2 et 1 et 32+2+1= 35...
Par exemple, binaire 1101001 = hexadécimal 69 (i est la neuvième lettre) = décimal 105 représenterait une minuscule I dans le codage ASCII.
dépend de la base utilisée : 10 est toujours égal à la base, c'est-à-dire dix en base dix, mais deux en base deux. En base dix, on utilise dix chiffres, de zéro à neuf ; en base n, on utilise n chiffres, de zéro à n – 1 ; donc en base deux on utilise les deux chiffres « 0 » et « 1 ».
En Occident, la plupart des gens ont appris à compter en base 10 avec les chiffres 0, 1, 2..., 9. Cependant, il existe d'autres systèmes de numération, les plus connus étant les systèmes binaire (0, 1) et hexadécimal (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F).
Sur deux octets, c'est-à-dire seize bits, on peut représenter 216 = 65536 nombres différents : le plus petit d'entre eux est représenté par 00000000 00000000, c'est le nombre 0, et le plus grand est représenté par 11111111 11111111, c'est le nombre 65535.