lim x → a f ( x ) − f ( a ) x − a = ℓ . Si ℓ∈R, ℓ ∈ R , ceci prouve que f f est dérivable en a a et que f′ f ′ est continue en a a puisque limx→af′(x)=f′(a)=ℓ.
La dérivabilité se démontre usuellement de deux façons : dans l'étude locale (c'est-à-dire en se plaçant dans un voisinage du point étudié), en utilisant directement la définition de l'existence du nombre dérivé à l'aide de limites.
Soient a et x deux éléments de I. "f est dérivable en a" signifie que le taux de variation de f en a admet une limite L en a. Ainsi, on peut écrire : La limite L est notée f'(a) et s'appelle le nombre dérivé de f en a.
On dit qu'une fonction f est dérivable sur un intervalle I lorsque f est dérivable en tout point de I. On note f la fonction dérivée de f qui à tout x ∈I associe f (x). Si g ne s'annule pas sur I, f g est aussi dérivable sur I et ( f g ) = f g − fg g2 .
Pour un intervalle fermé [ 𝑎 ; 𝑏 ] , la fonction ne peut pas être dérivable en 𝑥 = 𝑎 car la limite existerait uniquement d'un côté de 𝑎 ; on dit toutefois qu'une fonction est dérivable sur [ 𝑎 ; 𝑏 ] quand elle est dérivable sur ( 𝑎 ; 𝑏 ) et dérivable à droite en 𝑥 = 𝑎 et à gauche en 𝑥 = 𝑏 .
Les fonctions discontinues sont non dérivables en tout point où elles sont discontinues.
la dérivée n-`eme de f en a l'application x ↦→ f(n)(x). Soit n ∈ N∗. On dit que f est n-fois continûment dérivable (ou de classe Cn) sur D si f est n-fois dérivable sur D et f(n) est continue. On dit que f est indéfiniment dérivable (ou de classe C∞) sur D lorsque pour tout n ∈ N, f est n-fois dérivable sur D.
Soient I un intervalle de R, f : I → R une fonction dérivable et a ∈ I. On dit que f est deux fois dérivable en a si f est dérivable en a. La dérivée de f en a s'appelle la dérivée seconde de f en a et se note f (a). On dit que f est deux fois dérivable si f est dérivable.
D'après le théorème des fonctions réciproques, la fonction est dérivable en tout point image d'un tel que. Mais on a : f ′ ( x ) = 0 ⇔ x = 0 , donc est dérivable en tout point autre que. Donc est dérivable sur. Représentation graphique de et de dans un repère orthonormé.
Se dit d'une fonction qui a une dérivée. (On distingue, selon les cas, les fonctions dérivables à droite ou à gauche, dérivables sur un intervalle ouvert ou fermé, dérivables n fois ou indéfiniment dérivables.)
f est convexe sur I si et seulement si sa dérivée f ' est croissante sur I. f est concave sur I si et seulement si sa dérivée f ' est décroissante sur I. Remarque : une fonction est croissante lorsque sa dérivée est positive. Il apparaît donc logique de s'intéresser au signe de la dérivée de f '(x).
Exemple. Soit f une fonction de la variable réelle x définie par f ( x ) = 8 x + 32 . La fonction est définie pour tous les x tels que est positif ou nul et seulement pour ceux-ci. La quantité est positive ou nulle si et seulement si 8 x est supérieur ou égal à − 32 .
Remarque : Dire que la fonction carré est définie sur ℝ signifie que peut prendre n'importe quelle valeur de ℝ. La courbe d'équation = de la fonction carré est appelée une parabole. Propriété : La courbe d'équation = de la fonction carré est symétrique par rapport à l'axe des ordonnées.
Lorsque l'on définit une fonction, on l'écrit généralement sous la forme 𝑓 ∶ 𝑋 ⟶ 𝑌 . Cela signifie que pour tout élément 𝑥 ∈ 𝑋 , on associe par la fonction 𝑓 un élément 𝑦 ∈ 𝑌 . Nous écrivons cela comme 𝑓 ( 𝑥 ) = 𝑦 .
si la dérivée n-i`eme, notée f(n), est continue, alors on dit que f est de classe Cn. (5) Si f est de classe Cn pour tout n ∈ N, alors f est infiniment dérivable, on dit que f est de classe C∞.
On démontre qu'une fonction est convexe sur un intervalle si et seulement si sa dérivée est croissante sur cet intervalle, autrement dit si sa dérivée seconde est positive sur cet intervalle.
Une fonction f est strictement convexe sur I si et seulement si ∀λ ∈ [0,1], ∀(x, y) ∈ I2, f(λx + (1 − λ)y) < λf(x) + (1 − λ)f(y).
La dérivée seconde indique la variation de la pente de la courbe représentative et permet de mesurer la concavité locale de la courbe. Si elle est positive sur un intervalle, la pente augmente, la courbure est vers le haut, la fonction est dite « convexe » sur cet intervalle.
Lorsqu'une fonction n'est pas linéaire, sa pente peut varier d'un point à l'autre. Il nous faut donc introduire la notion de dérivée qui permet d'obtenir la pente en tout point de ces fonctions non linéaires.
En mathématiques, la dérivée d'une fonction d'une variable réelle mesure l'ampleur du changement de la valeur de la fonction (valeur de sortie) par rapport à un petit changement de son argument (valeur d'entrée).
Exemple d'utilisation : pour définie sur , sa fonction dérivée est car la dérivée de x2 est 2x (comme on a 3x2, on multiplie 2x par 3) et la dérivée de x est 1 (que l'on multiplie par -2).
Propriété 1 : si f est convexe sur I, alors f est continue sur I. Propriété 2 : si f est convexe sur I, alors f est dérivable `a droite et `a gauche sur I et ∀x0 ∈ I, fg (x0) ⩽ fd (x0).
Théorème : Soit I un intervalle de R et f:I→R f : I → R dérivable. Alors : f est croissante sur I si et seulement si, pour tout x∈I x ∈ I , f′(x)≥0 f ′ ( x ) ≥ 0 ; f est strictement croissante sur I si et seulement si f′≥0 f ′ ≥ 0 et si f′ n'est identiquement nulle sur aucun intervalle [a,b]⊂I [ a , b ] ⊂ I avec a<b .
Si 𝑓 ′ ′ ( 𝑥 ) > 0 pour tout 𝑥 appartenant à 𝐼 , alors 𝑓 est convexe sur 𝐼 . Si 𝑓 ′ ′ ( 𝑥 ) < 0 pour tout 𝑥 appartenant à 𝐼 , alors 𝑓 est concave sur 𝐼 . Si 𝑓 ′ ′ ( 𝑥 ) = 0 ou n'est pas défini, un point d'inflexion peut exister (ainsi, cette condition seule ne garantit pas la présence d'un point d'inflexion).
Pour dresser le tableau de variations d'une fonction, il faut calculer la dérivée, étudier le signe de celle-ci, et compléter les valeurs aux extrémités de chacune des flèches placées, en faisant attention aux éventuelles valeurs interdites sur l'intervalle d'étude.