Pour savoir si un tableau est proportionnel, on prend chaque colonne de ce tableau et on divise le nombre de la seconde ligne par celui de la première ligne.
Si les points d'une représentation graphique sont alignés entre eux et avec l'origine d'un repère, alors ces points représentent une situation de proportionnalité. Les points de la représentation graphique A A A ne sont pas alignés, donc ce n'est pas une situation de proportionnalité.
Il y a proportionnalité dans un tableau de nombres à deux lignes lorsque les nombres de la deuxième ligne s'obtiennent en multipliant ceux de la première par un même nombre que l'on appelle coefficient de proportionnalité. Le prix de cerises vendues 2,70 € le kilogramme est proportionnel à leur masse.
Retenir Deux grandeurs sont proportionnelles si on peut obtenir toutes les valeurs de l'une en multipliant celles de l'autre par un même nombre non nul. Elles varient toujours dans la même proportion.
Exemples : 1) Les points sont alignés sur une droite qui passe par l'origine du repère, il s'agit donc d'une situation de proportionnalité. 2) Les points sont alignés sur une droite qui ne passe pas par l'origine du repère, il ne s'agit donc pas d'une situation de proportionnalité.
Deux grandeurs sont proportionnelles si et seulement si on passe des valeurs de la première grandeur aux valeurs de la deuxième en multipliant toujours par un même nombre. Pour passer d'un prix en euros (première grandeur) à un prix en francs (deuxième grandeur) on multiplie chaque prix en euros par 6,55957.
Deux grandeurs sont proportionnelles s'il est possible d'obtenir les valeurs de l'une en multipliant les valeurs de l'autre par un nombre, toujours le même. Ce nombre est appelé coefficient de proportionnalité. L'âge et la masse d'une personne ne sont pas proportionnels.
Deux grandeurs sont proportionnelles si, lorsqu'on en multiplie une par un nombre non nul, l'autre est également multipliée par ce même nombre. Max a acheté 1 croissant pour 1,02€. Pour en acheter 3, il devra payer 3 fois plus cher, c'est-à-dire, 3 \times 1{,}02 = 3{,}06 €.
Un tableau de proportionnalité caractérise une situation de proportionnalité. Il contient les valeurs de deux grandeurs proportionnelles. C'est donc un tableau dans lequel on obtient les nombres d'une ligne en multipliant les nombres de l'autre ligne par le coefficient de proportionnalité.
Deux grandeurs sont proportionnelles si, lorsqu'on en multiplie une par un nombre non nul, l'autre est également multipliée par ce même nombre. Max a acheté 1 croissant pour 1,02€. Pour en acheter 3, il devra payer 3 fois plus cher, c'est-à-dire, 3×1,02=3,06 €. Le prix est proportionnel au nombre de croissants achetés.
Un tableau est de proportionnalité si pour passer de la première ligne à la seconde ligne, on multiplie toujours par le même nombre, ce nombre est alors appelé coefficient de proportionnalité. On dira que les deux grandeurs, correspondant à chaque ligne, sont proportionnelles.
Quel est le contraire de proportionnel ? Ce n'est pas exactement le contraire, mais plutôt l'opposé : inversement proportionnel . Quand deux quantités sont inversement proportionnelles l'une de l'autre, ça signifie que plus l'une augmente, plus l'autre diminue.
Pour trouver une quatrième proportionnelle, on écrit les produits en croix égaux, c'est-à-dire : 24 × 12 = 15 × x. On considère l'égalité suivante : \frac{9}{8} = \frac{x}{10}. Quelle est la valeur du nombre x ? Les produits en croix sont égaux, donc 90 = 8 × x ou encore 90 ÷ 8 = x soit x = 11,25.
Tableaux de proportionnalité
Un tableau traduit une situation de proportionnalité lorsque l'on obtient les nombres de la première ligne en multipliant les nombres correspondants de la deuxième ligne par un même nombre.
Le nombre par lequel on multiplie les valeurs d'une des grandeurs pour obtenir l'autre est appelé « coefficient de proportionnalité ». Dans l'exemple précédent, pour savoir combien coûtent 3 croissants, on multiplie le nombre de croissants, soit 3, par le prix d'un croissant, soit 1,02 €.
Dans la ligne qui contient la case vide, on effectue l'addition horizontale des 2 mêmes colonnes pour trouver le nombre manquant. Dans la ligne du bas, on additionne les nombres des 2 premières colonnes (3 + 42) pour obtenir le nombre manquant (45).
1. Se dit d'une quantité qui reste dans son rapport de proportion avec une autre : La somme gagnée est proportionnelle au travail. 2. Qui est déterminé par une proportion, une relation à quelque chose d'autre : Retraite proportionnelle.
Propriété : Dans un tableau de proportionnalité, il y a égalité des produits en croix. Si a c b d est un tableau de proportionnalité, alors a b = c d , donc a × d = b × c. Tout graphique dont les points sont alignés avec l'origine du repère, représente une situation de proportionnalité.
Règles de priorité
Pour calculer une expression numérique sans parenthèses, on effectue les calculs de la gauche vers la droite, en commençant par les multiplications et les divisions qui ont priorité sur les additions et les soustractions.
Appliqué à deux fractions, le produit en croix est le produit du numérateur de l'une par le dénominateur de l'autre (d'où l'idée de « croisement »). Soient deux fractions a b \frac ab ba et c d \frac cd dc avec b et d non nuls, leurs produits en croix sont a × d a \times d a×d et c × b c \times b c×b.
Deux grandeurs sont proportionnelles si, lorsqu'on multiplie l'une par un nombre non nul, l'autre est également multipliée par ce même nombre. Connaître le coefficient de proportionnalité entre ces deux grandeurs permet de passer de l'une à l'autre. Cela n'est possible que si les deux grandeurs sont proportionnelles.
Synonyme : équilibre, harmonie. Contraire : déséquilibre, disproportion, inégalité.
Pour afficher les valeurs manquantes dans une plage, cliquez avec le bouton droit de la souris (ou cliquez en appuyant sur la touche Ctrl sur Mac) sur les en-têtes de date ou de classe et sélectionnez Afficher les valeurs manquantes.