D'abord on supprime les signes de multiplication inutiles. Ensuite on effectue les multiplications entre les nombres (2 x 5 = 10). Enfin on transforme les multiplications de lettres identiques (aa) en exposant (a²). La 1ère étape est de supprimer les signes de multiplication inutiles.
En pratique, réduire une expression revient à rassembler les termes en « x2 », en « x » et les constantes. Exemples : Réduisons les expressions A et B. L'expression est bien réduite car on est passé de 3 opérations (2 multiplications et une addition) à une seule multiplication au résultat.
Réduire une somme, c'est l'écrire avec le moins de termes possibles (en regroupant les termes de même espèce). Réduire un produit, c'est l'écrire avec le moins de facteurs possibles. B = 5 × 3 × x × y × 4 × x 2 Je réordonne les facteurs, lettres à droite.
Pour simplifier l'écriture d'une expression littérale, on peut supprimer le symbole × devant une lettre ou une parenthèse. Remarque : On ne peut pas supprimer le signe × entre deux nombres. Exemple : Simplifie l'expression suivante : A = – 5 × x + 7 × (3 × x – 2) × (– 4).
Commencez par réduire le numérateur d'une part et le dénominateur d'autre part sous forme d'une seule fraction. Puis utilisez la multiplication par l'inverse. A = 1a+1b1+ab=bab+aabbb+ab=b+aabb+ab=b+aab×ba+b=(a+b)bab(a+b)=1a.
Pour simplifier une expression, on multiplie les nombres entre eux, et on supprime les signes de multiplication inutiles. La multiplication de 7 par 2 est effectuée (14). Le signe de multiplication entre 7 et X est inutile, on le supprime. Le résultat obtenu est la forme développée de l'expression littérale de départ.
Pour soustraire un polynôme à un autre, il faut additionner l'opposé de chacun des termes semblables du second polynôme à ceux du premier et réduire l'expression algébrique obtenue. On obtient alors un nouveau polynôme correspondant à la somme recherchée.
Réduire une expression littérale revient à l'écrire le plus simplement avec le moins de termes possible. On regroupe les termes de l'expression du même type ensemble lorsque l'expression est composée d'additions et/ou de soustractions de termes.
Ici, le facteur commun est (x + 3), avec deux termes. Pour factoriser, on va développer et réduire l'expression en utilisant le même procédé que pour un seul terme (2x + 4 = x(x+2)), mais il faudra insérer des crochets entre les parenthèses afin de bien isoler les termes sans se tromper.
La réduction peut s'effectuer de deux manières : soit en additionnant ou en soustrayant les équations terme à terme. On additionnera lorsque les coefficients d'une des variables sont opposés et on soustraira lorsque les coefficients d'une des variables sont égaux.
Une expression littérale contient des lettres. L, l, a, b sont des lettres qui représentent des nombres, elles figurent dans les expressions 2 × (l + L), 2a + 3, 2 × a × b. Ce sont des expressions littérales.
Développer, c'est transformer une multiplication en une somme ou en une différence. La multiplication est distributive sur l'addition. Cela signifie que, pour tous nombres k, a et b, on a : k(a + b) = ka + kb. De même, la multiplication est distributive sur la soustraction : k(a − b) = ka − kb.
Pour réduire les fractions au même dénominateur il faut:
diviser le plus petit dénominateur commun par dénominateurs de ces fractions c'est-à-dire trouver pour chaque fraction le facteur supplémentaire; multiplier le numérateur et dénominateur de chaque fraction au facteur supplémentaire.
Pour exprimer une fraction impropre à sa plus simple expression, divise le numérateur par le dénominateur. Lorsque tu simplifies une fraction impropre à sa plus simple expression, tu obtiens un nombre fractionnaire.
Dans une expression littérale composée d'additions et de soustractions, on peut supprimer des parenthèses précédées d'un signe – , en changeant chaque signe à l'intérieur de la parenthèse.
Simplifier une fraction, c'est l'écrire avec un numérateur et un dénominateur plus petits. En pratique, cela revient à diviser le numérateur et le dénominateur par un même nombre.
Factoriser c'est transformer une somme en produit en faisant apparaître son facteur commun. Réduire c'est effectuer dans une expression littérale des calculs possibles.
Factoriser une expression numérique ou littérale, c'est l'écrire sous la forme d'un produit. avec k, a et b trois nombres quelconques.
Pour diviser un polynôme A(x) par un polynôme D(x) : – on réduit et on ordonne par ordre décroissant des puissances de la variable, les deux polynômes – on complète le polynôme A(x) – on effectue la division et on arrête lorsque le reste a un degré inférieur à celui de D(x).
Réduire une expression littérale, c'est regrouper les termes « semblables » et effectuer les calculs. Les termes « semblables » sont ici ceux qui ne contiennent que la variable a. B = 5a − 7b − 2ab.
Lorsqu'on multiplie deux monômes ensemble, on multiplie les coefficients des deux monômes et on additionne les exposants affectant les variables identiques. Soit les deux monômes suivants : −3x3y4 − 3 x 3 y 4 et 4xy2 4 x y 2 . On effectue la multiplication −3x3y4×4xy2 − 3 x 3 y 4 × 4 x y 2 .
Factoriser une expression algébrique
Pour cela on peut chercher un facteur commun aux différents termes de la somme et utiliser en sens inverse les règles précédemment notées. ka + kb = k × a + k × b = k × (a + b) ka - kb = k × a - k × b = k × (a - b) On peut aussi reconnaitre une identité remarquable.
si c'est une addition ou une soustraction, l'expression est une somme ; si c'est une multiplication ou une division, l'expression est un produit.
Distributivité en arithmétique
En arithmétique, les deux opérations considérées lorsqu'on parle de distributivité sont l'addition et la multiplication. La multiplication est distributive par rapport à l'addition : x × (y + z) = (x × y) + (x × z)