Les solutions de l'équation f(x) = 3 sont obtenues en lisant les abscisses des points d'ordonnée 3. Par lecture graphique, on obtient une unique solution à cette équation : 4.
Résoudre l'équation x3 = c (avec ) revient à chercher le nombre x tel que x × x × x = c. Ce nombre est unique, car pour tout nombre réel c, la droite d'équation y = c ne coupe qu'une seule et unique fois la courbe représentative de la fonction x → x3.
Résoudre graphiquement une inéquation du type f(x) < k, revient à déterminer les abscisses des points de la courbe situés au dessous de la droite horizontale d'équation y = k. f(x) > k déterminer les abscisses des points de Cf situés au dessus de la droite horizontale y = k.
Une équation est une égalité entre deux expressions mathématiques, donc une formule de la forme A = B, où les deux membres A et B de l'équation sont des expressions où figurent une ou plusieurs variables, représentées par des lettres.
Résoudre une équation d'inconnue , c'est déterminer toutes les valeurs de (si elles existent) pour lesquelles l'égalité est vraie. Chacune de ces valeurs est appelée une solution de l'équation.
La résolution de problèmes à l'aide d'équations
Sur ce type de travail, nous dégagerons chaque fois 3 étapes: 1ère Étape: Déclarer l'inconnue du problème et mettre en équation ce problème. 2ème Étape: Résoudre l'équation. 3ème Étape: Interpréter le résultat.
a/ Pour résoudre l'inéquation f(x) < 0, on repère la portion de courbe au dessous de l'axe des abscisses (Ox) : les abscisses correspondantes donnent l'ensemble solution. Si l'inéquation à étudier est f(x) ≤ 0, on prend également les abscisses des points d'intersection. donnent l'ensemble solution.
Son expression algébrique s'écrit : f(x) = mx + p. m est le coefficient directeur de la fonction et on ajoute p au résultat. Par une fonction affine, chaque image a un seul antécédent.
Fiches méthodes. Si on a une fonction et qu'on cherche les coordonnées d'un point de sa courbe représentative : on choisit une valeur de x et on calcule y = f(x) en remplaçant x dans l'expression f(x) donnée. On obtient ainsi les coordonnées ( x ; y = f(x) ) d'un point de la représentation graphique de la fonction f.
L'équation de Drake.
Les équations simples sont des équations algébriques qui impliquent une seule variable et une opération. Par exemple, une équation peut être exprimée sous la forme “x+3=5”.
Par conséquent, pour trouver les zéros de cette fonction, nous devons résoudre l'équation 𝑓 ( 𝑥 ) = 0 . Voici l'équation 1 3 ( 𝑥 − 4 ) = 0 . La multiplication par 3 donne 3 × 1 3 ( 𝑥 − 4 ) = 3 × 0 𝑥 − 4 = 0 . On ajoute ensuite 4 aux deux membres de l'équation 𝑥 − 4 + 4 = 0 + 4 𝑥 = 4 .
On appelle fonction polynôme du troisième degré toute fonction f définie sur R et qui s'écrit f(x) = ax3 + bx2 + cx + d où a, b, c et d sont des réels fixés et a = 0. Propriété : Soient a, x1 et x2 des réels. La fonction f définie par f(x) = a(x − x1)(x − x2)(x − x3) est une fonction polynôme du troisième degré.
C'est Leonhard Euler (1707-1783) qui aura éclairci la détermination des trois racines d'une équation cubique.
f est une fonction affine, elle a une expression de la forme f\left(x\right) = ax+b, avec : a le coefficient directeur de la droite. b l'ordonnée à l'origine.
La droite (d) représentant la fonction f définie par f(x) = ax + b a pour coefficient directeur a et pour ordonnée à l'origine b. Remarques : - Si le coefficient directeur est positif alors la droite « monte ». On dit que la fonction affine associée est croissante.
Pour comparer deux fonctions définies par f(x) et g(x): - on calcule f(x) - g(x), en simplifiant autant que possible l'expression. - on réalise le tableau de signes du résultat (revoir les signes des fonctions affines et des trinômes !).
Résoudre graphiquement l'équation f (x) = k, c'est trouver les abscisses des points de la courbe représentative de f qui ont pour ordonnée k. Résoudre graphiquement une inéquation du type f(x) < k, c'est trouver les abscisses des points de la courbe représentative de f d'ordonnée strictement inférieure à k.
Pour factoriser une somme, il faut repérer le facteur commun aux différents termes de la somme. A : le facteur commun est x ; si l'on développe x(x − 5), on retrouve bien x2 − 5x. B : le facteur commun est 2x ; si l'on développe 2x(x − 3 + y), on retrouve bien 2x2− 6x + 2xy.
Si la fonction f ( x , y ) admet des dérivées partielles (par rapport à et ) qui sont continues, et si l'on se fixe des réels et , il existe une solution et une seule de l'équation y ′ = f ( x , y ) , définie sur un intervalle contenant , qui vérifie u ( x 0 ) = y 0 .
Avec une équation, le but est souvent de trouver la valeur inconnue, qui sera donc la solution de l'équation. Une équation peut avoir une solution, plusieurs solutions ou aucune solution.
Si k \notin J_i alors l'équation f\left(x\right) = k n'admet pas de solution sur I_i. Si k \in J_i alors d'après le corollaire du théorème des valeurs intermédiaires, l'équation f\left(x\right) = k admet une unique solution sur I_i.
On dit que les équations x² - 5x = 0 et x(x - 5) = 0 sont équivalentes. donc x = 0 ou x - 5 = 0 et il n'y a pas d'autre solution.