Théorème 1. x 3 + p x + q = 0 x^3 + p x + q = 0 x3+px+q=0. Cette formule permet de calculer une solution de l'équation, dans le cas où il n'y a pas de racine évidente.
Comment trouver la racine évidente ? Lorsque l'énoncé demande de chercher une racine évidente, il s'agit d'utiliser sa calculatrice pour calculer le polynôme en certaines valeurs ($-3\ ; -2\ ; -1\ ; 0\ ; 1\ ; 2\ ; 3$). On trouve à l'aide de la calculatrice que $-2$ est une racine, c'est-à-dire $P(-2) = 0$.
Application à la résolution d'équations
En effet, si un polynôme P de degré n a une racine α, il peut se factoriser sous la forme P(X) = (X – α)Q(X), où Q est de degré n – 1. La résolution de l'équation (de degré n) P(x) = 0 se ramène alors à celle de l'équation (de degré n – 1) Q(x) = 0.
Résoudre l'équation x3 = c (avec ) revient à chercher le nombre x tel que x × x × x = c. Ce nombre est unique, car pour tout nombre réel c, la droite d'équation y = c ne coupe qu'une seule et unique fois la courbe représentative de la fonction x → x3. L'équation x3 = 8 admet une unique solution x = 2 car 2 × 2 × 2 = 8.
Soit P un polynôme du troisième degré et soient a, b, c et d quatre réels, a non nul, tels que P(x) = ax3 + bx2 + cx + d où x est un réel. On étudie l'équation P(x) = 0. Plus précisément, on cherche à connaître son nombre de solutions, les valeurs exactes de celles-ci ou à défaut des valeurs approchées.
Par conséquent, pour trouver les zéros de cette fonction, nous devons résoudre l'équation 𝑓 ( 𝑥 ) = 0 . Voici l'équation 1 3 ( 𝑥 − 4 ) = 0 . La multiplication par 3 donne 3 × 1 3 ( 𝑥 − 4 ) = 3 × 0 𝑥 − 4 = 0 . On ajoute ensuite 4 aux deux membres de l'équation 𝑥 − 4 + 4 = 0 + 4 𝑥 = 4 .
C'est Leonhard Euler (1707-1783) qui aura éclairci la détermination des trois racines d'une équation cubique.
➡️ Par exemple, pour un polynôme du second degré P(x) = ax² + bx + c, les racines peuvent être trouvées en résolvant l'équation quadratique ax² + bx + c = 0 à l'aide de la formule quadratique. Autrement dit, un réel a est un racine de P si P(a) = 0. On dit aussi que a est solution de l'équation P(x) = 0.
Sachant aujourd'hui que tout nombre complexe non nul admet trois racines cubiques distinctes, on en déduit que si D est négatif, l'équation du 3e degré possède trois solutions réelles distinctes.
Méthode : Pour étudier les variations d'une fonction polynome du 3° degré, il suffit de déterminer l'expression de sa fonction dérivée ( qui sera du 2° degré ), puis d'étudier son signe et de conclure avec le théorème.
Il n'est pas toujours nécessaire de calculer le discriminant Δ. On peut aussi chercher une racine évidente de l'équation du second degré en factorisant le polynôme. Résoudre x2 – 1 = 0 revient à résoudre x2 = 1 soit x = –1 ou x = 1. Résoudre x2 – 2x = 0 revient à résoudre x(x – 2) = 0 soit x = 0 ou x = 2.
On convient d'appeler l'opposé de la racine carrée de a la racine carrée négative de a. La racine carrée négative de a est notée – a. Ex. : La racine carrée négative de 36, notée – 36, est –6.
Pour parvenir à factoriser une expression en un produit de facteurs, il faut d'abord chercher si l'on peut isoler un facteur commun. Par exemple on va chercher le terme commun qui permet de multiplier le premier terme par la deuxième expression : 4x+20 par exemple, est égal à 2 x (2x + 10).
Racine cubique :
La racine cubique d'un nombre réel y y y est l'unique nombre x x x qui, élevé à la puissance 3 3 3, c'est-à-dire multiplié trois fois par lui-même, vaut y y y. Ainsi, y = x 3 y = x^3 y=x3. La racine cubique de y y y est notée y 3 \sqrt[3] {y} 3y .
Formule. k × A + k × B = k × (A + B). Pour réussir à factoriser, il faut donc identifier le facteur commun k, puis A et B. Ensuite, il faut remplacer les valeurs trouvées dans la formule.
Si un polynôme P de degré 3 admet une racine réelle α , alors ce polynôme est factorisable par (x −α). on a alors : P(x) = (x −α)×Q(x) où Q(x) est un polynôme de degré 2. Utilisation : Le polynôme P(x) = x3 −4x2 −7x +10 admet comme racine évidente le nombre 1.
dans ℝ, on procède comme suit : • on nomme l'inconnue ; on met le problème en équation ou en inéquation ; • on résout l'équation ou l'inéquation ; • on conclut en interprétant le résultat trouvé.
Pour résoudre un système de deux équations linéaires à deux inconnues par la méthode de substitution, il suffit d'isoler l'une des inconnues dans l'une des équations et de remplacer cette inconnue par sa valeur dans l'autre équation.
Il existe un moyen de résoudre une équation du second degré sans passer par le calcul du discriminant: la factorisation. Cette méthode consiste à trouver une relation entre le produit de a par c d'une part, et b de l'autre.
En mathématiques, une racine d'un polynôme P(x) est une valeur α telle que P(α) = 0. C'est donc une solution de l'équation polynomiale P(x) = 0 d'inconnue x, ou encore, un zéro de la fonction polynomiale associée. Par exemple, les racines de x2 – x sont 0 et 1.
On appelle racine d'un polynôme réel ou complexe une racine d'un polynôme P(X) à une seule variable dont les coefficients sont réels ou complexes, c'est-à-dire un nombre α, réel ou complexe, vérifiant P(α) = 0.
Le début d'une véritable théorie des équations est généralement attribué à Viète, mathématicien français de la fin du XVI e siècle.
Principe de la méthode
Considérons l'équation générale du troisième degré suivante : ax3 + bx2 + cx + d = 0. La condition de simplification annoncée sera alors 3uv + p = 0.
René Descartes les baptise « nombres imaginaires » (1637).
* Si a = b = 0, l'expression devient : f (x) = 0 . On obtient alors la fonction nulle.