Le centre du cercle inscrit dans un triangle est le point d'intersection des trois bissectrices d'un triangle. Dans un triangle, l'hypoténuse est le plus grand côté. Une médiatrice est une droite qui passe par le milieu d'un segment et qui est perpendiculaire à ce même segment.
Les bissectrices sont concourantes en un point qui est le centre du cercle inscrit dans le triangle ABC. Ce cercle est tangent intérieurement aux côtés du triangle. Les médiatrices sont concourantes en un point qui est le centre du cercle circonscrit au triangle ABC. Ce cercle passe par les sommets du triangle.
Les 3 médiatrices d'un triangle sont les médiatrices de chacun de ses côtés. Ces 3 médiatrices se coupent en un point qui est le centre du cercle circonscrit au triangle.
Orthocentre. Les trois hauteurs d'un triangle sont concourantes. Leur point d'intersection H, est nommé orthocentre du triangle.
Dans un triangle, si trois lignes sont tracées en partant de chaque angle et en coupant le côté opposé à angle droit, elles se rencontrent en un point d'intersection, qui est appelé orthocentre, en géométrie.
Les hauteurs A,B,C sont concourantes en un point h appelé orthocentre du triangle abc.
Il y a trois médianes dans un triangle. Le point de rencontre de ces médianes se nomme le centre de gravité du triangle.
En mathématiques, des droites concourantes sont des droites qui ont un point d'intersection commun, ce point étant appelé point de concours.
La bissectrice d'un angle est la droite qui partage un angle en deux angles de même mesure. La bissectrice d'un angle peut également être définie comme l'ensemble des points à égale distance des deux côtés de l'angle. Cette deuxième définition permet de tracer la bissectrice d'un angle avec un compas.
Définition. La bissectrice d'un angle le partage en deux secteurs angulaires superposables.
En géométrie, un cercle circonscrit à un polygone est un cercle qui passe par tous les sommets du polygone. Le polygone est alors dit inscrit dans le cercle : on parle de polygone inscriptible ou parfois de polygone cyclique. Les sommets sont alors cocycliques, situés sur un même cercle.
Si [AA'] est un diamètre d'un cercle (c) et M un point de (c) autre que A et A', alors le triangle AMA' est rectangle en M. En d'autres termes : les droites (MA) et (MA') sont perpendiculaires; Si deux droites (d1) et (d2) sont perpendiculaires à une même droite (d) alors (d1) // (d2).
4º. - Les bissectrices : Comme on l'a déjà vu dans la fiche sur les angles, une bissectrice est une droite qui coupe un angle en 2 angles égaux. Dans un triangle, c'est donc la droite qui coupe un sommet en deux angles égaux.
Médiatrice : droite passant par le milieu d'un segment et perpendiculaire à ce segment. Bissectrice : demi-droite coupant un angle en deux parties égales.
V Les droites sécantes
Définition : On dit que deux droites qui se coupent (se croisent) sont des droites sécantes. Propriété : Quand deux droites sont sécantes, elles forment un point. Ce point est appelé point d'intersection.
2/ Médianes d'un triangle
Définition Dans un triangle, une médiane est une droite passant par un sommet et le milieu du côté opposé à ce sommet. Illustration Trace un triangle RTS quelconque puis construis ses trois médianes. Propriété Dans un triangle, les médianes sont concourantes.
Cas du cercle inscrit.
Le point d'intersection est donc sur la bissectrice intérieure issue de C et plus exactement sur la demi-droite bissectrice du secteur angulaire (ACB). Le point d'intersection est alors le centre d'un cercle tangent aux trois côtés du triangle. C'est le cercle inscrit.
Triangle dont aucun côté n'est égal à un autre.
Le centre O du cercle circonscrit à un triangle ABC est donc tel que : OA = OB (rayons du cercle) donc O appartient à la médiatrice de [AB]. OA = OC donc O appartient à la médiatrice de [AC]. OB = OC donc O appartient à la médiatrice de [BC].
La moyenne est calculée comme la somme des valeurs d'une série divisée par le nombre de valeurs dans cette série. La médiane divise, quant à elle, la série étudiée en deux groupes égaux.
Définition : Dans un triangle, une hauteur est une droite passant par un sommet et perpendiculaire au côté opposé. Il y a donc 3 hauteurs. Le point d'intersection d'une hauteur et d'un côté s'appelle le pied de la hauteur.
On note H le point d'intersection entre la hauteur et la droite [BC]. On dit que H est le pied de la hauteur.
Si ABC est un triangle, la hauteur issue de A est la droite passant par A et perpendiculaire au côté BC. Le point de la hauteur située sur droite (BC) est le pied de la hauteur.
Remarque : la bissectrice d'un angle est un axe de symétrie pour cet angle. Propriété : Si un point M appartient à la bissectrice d'un angle, alors M est à égale distance des côtés de cet angle. Réciproquement : Si un point M est à égale distance des côtés d'un angle alors M appartient à la bissectrice de cet angle.