Les trois hauteurs d'un triangle sont concourantes en un point appelé l'orthocentre du triangle. La médiatrice d'un segment est la droite perpendiculaire à ce segment et qui passe par son milieu. Les trois médiatrices d'un triangle sont concourantes en un point qui est le centre du cercle circonscrit au triangle.
Définition d'une hauteur
Dans un triangle A B C , on appelle hauteur issue d'un sommet, la droite passant par ce sommet et perpendiculaire au côté opposé.
Cette formule permet de calculer la hauteur du triangle rectangle : h = ba/c.
La hauteur issue de A est perpendiculaire à [BC] donc à [B'C']. Comme elle passe de plus par son milieu, c'est la médiatrice du segment [B'C']. On démontre ainsi que les trois hauteurs du triangle ABC sont les trois médiatrices du triangle A'B'C'. Par conséquent, elles sont concourantes.
Le point d'intersection des hauteurs s'appelle l'orthocentre.
Le centre du cercle circonscrit au triangle est le point d'intersection des trois médiatrices du triangle. S'il s'agit d'un triangle rectangle, le centre du cercle circonscrit au triangle est le milieu de l'hypoténuse du triangle.
Une hauteur dans un triangle est la droite qui passe par un sommet et qui est perpendiculaire au côté opposé. Dans ce cas, on dit que (AH) est la hauteur issue de A ou que (AH) est la hauteur relative au côté [BC]. [BC] est aussi appelé la base relative à cette hauteur.
Hauteur et aire[modifier | modifier le wikicode]
La hauteur d'un triangle équilatéral est égale à la longueur que l'on multiplie par la moitié de la racine carrée de 3.
La hauteur d'un triangle est une droite qui passe par un sommet et qui est perpendiculaire au côté opposé. Ce côté est alors appelé la base du triangle. La hauteur permet de calculer l'aire du triangle.
orthocentre , subst. masc. Point de rencontre des trois hauteurs d'un triangle, des quatre hauteurs d'un tétraèdre.
Le triangle rectangle isocèle : si l'on connaît l'hypoténuse de ce rectangle, on peut arriver à trouver la valeur des cathètes en posant cette longueur comme la variable x pour obtenir l'équation x2 + x2 = c2 qui à son tour devient 2x2 = c2.
Une médiane est un segment qui relie le sommet d'un triangle au milieu du côté opposé à ce sommet.
Dans un triangle, une hauteur est une droite qui passe par un sommet et qui est perpendiculaire au côté opposé. Les trois hauteurs d'un triangle sont concourantes en un point appelé l'orthocentre du triangle. La médiatrice d'un segment est la droite perpendiculaire à ce segment et qui passe par son milieu.
Selon Pythagore, dans un triangle rectangle abc, c étant l'hypoténuse (le plus long côté), on a l'équation suivante : a2 + b2 = c2. C'est cette équation qui va nous permettre de trouver la hauteur de notre triangle !
L'orthocentre est le point d'intersection des 3 hauteurs d'un triangle, il peut être à l'extérieur du triangle. Pour trouver ses coordonnées, trouve l'équation de deux hauteurs et leur point d'intersection.
La hauteur d'un côté est la droite qui est perpendiculaire au côté et qui passe par le sommet opposé. La bissectrice d'un angle est la droite qui partage un angle en deux angles de même mesure.
Définition de hypoténuse nom féminin
Géométrie Le côté opposé à l'angle droit, dans un triangle rectangle. Le carré de l'hypoténuse est égal à la somme des carrés des deux autres côtés (théorème de Pythagore).
Si nous appliquons le théorème de Pythagore, nous obtenons que ℎ au carré plus 32 racine de trois sur trois au carré est égal à 88 au carré. Lorsque nous élevons ces valeurs au carré, 32 racine de trois sur trois au carré donne, au numérateur, 32 au carré fois racine trois au carré, soit trois, sur trois au carré.
Hauteurs d'un triangle : définition
ABC est un triangle quelconque. Une hauteur, dans un triangle, est une droite passant par un sommet et perpendiculaire au côté opposé. (AH) est la hauteur du triangle issue du sommet A. On appellera aussi hauteur, selon le contexte, le segment [AH] ou la longueur AH.
Un triangle obtusangle possède 2 hauteurs à l'extérieur. La hauteur du troisième côté du triangle obtusangle n'a rien de particulier. Trace une droite perpendiculaire au troisième côté [TR] et qui passe par le sommet opposé S. Les droites (h1), (h2) et (h3) sont les 3 hauteurs du triangle obtusangle.
Théorème de Pythagore :
Si un triangle est rectangle , alors le carré de la longueur de son hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Exemple 1 : Soit le triangle ABC rectangle en A ([BC] est donc l'hypoténuse), alors BC²=AC²+BA².
Le point d'intersection est donc sur la bissectrice intérieure issue de C et plus exactement sur la demi-droite bissectrice du secteur angulaire (ACB). Le point d'intersection est alors le centre d'un cercle tangent aux trois côtés du triangle. C'est le cercle inscrit.
Médianes et centre de gravité
Dans un triangle, une médiane est un segment qui relie un sommet au milieu du côté opposé. Chaque médiane divise un triangle en deux triangles d'aires égales. Si le triangle est non plat, les trois médianes sont concourantes en un point appelé centre de gravité.
- Les bissectrices : Comme on l'a déjà vu dans la fiche sur les angles, une bissectrice est une droite qui coupe un angle en 2 angles égaux. Dans un triangle, c'est donc la droite qui coupe un sommet en deux angles égaux.