Le déterminant de u et v est le réel det(u ;v )=xy′−yx′. Propriété : Deux vecteurs sont colinéaires si, et seulement si, leur déterminant est nul. Le déterminant de u (−3 ;9) et v (1 ;−3) est det(u ;v )=(−3)×(−3)−9×1=0.
On trouve les coordonnées de chaque vecteur. On regarde si les coordonnées des vecteurs sont proportionnelles. Si les coordonnées sont proportionnelles, alors les vecteurs sont colinéaires. Si les coordonnées ne sont pas proportionnelles, alors les vecteurs ne sont pas colinéaires.
Le vecteur est un vecteur directeur de la droite d'équation ax + by + c = 0. Soient (d) la droite de vecteur directeur et (d') la droite de vecteur directeur . Les droites (d) et (d') sont parallèles si et seulement si et sont colinéaires, c'est-à-dire si et seulement si le déterminant de et de est nul.
Les points A, B et C sont alignés si et seulement si les vecteurs ⃗ AB et ⃗ AC sont colinéaires. Les droites (AB) et (CD) sont parallèles si et seulement si les vecteurs ⃗ AB et ⃗ CD sont colinéaires.
est non libre. Étymologiquement, colinéaire signifie sur une même ligne : en géométrie classique, deux vecteurs sont colinéaires si on peut en trouver deux représentants situés sur une même droite. sont parallèles.
Remarques : Deux vecteurs non nuls sont colinéaires si et seulement s'ils ont la même direction. Le vecteur est colinéaire à tout vecteur du plan.
Produit scalaire et vecteurs colinéaires
Si ⃗ AB et ⃗ CD sont deux vecteurs colinéaires non nuls, alors : 1er cas, vecteurs de même sens : ⃗ ⋅ C D ⃗ = A B × C D \vec {AB}\cdot \vec {CD}=AB\times CD AB ⋅CD =AB×CD.
Deux vecteurs sont égaux si ils ont la même direction, le même sens et la même norme. Cela signifie que si deux vecteurs →AB et →CD sont égaux, alors le quadrilatère ABDC est un parallélogramme (Attention à l'ordre des lettres ! Il s'agit du quadrilatère ABDC et non ABCD.)
Solution détaillée. Les trois points A 1 , A 2 , A 3 sont alignés si et seulement si les vecteurs A 1 A 2 → et A 1 A 3 → sont colinéaires, donc si et seulement si le déterminant des vecteurs A 1 A 2 → , A 1 A 3 → , est nul.
Deux vecteurs →u et →v de l'espace sont orthogonaux si et seulement si →u. →v=0. . Deux droites D et Δ de vecteurs directeurs respectifs →u et →v sont dites orthogonales lorsque →u et →v le sont.
Si les deux vecteurs ⃑ 𝑢 et ⃑ 𝑣 sont perpendiculaires, alors l'angle 𝜃 = 9 0 ∘ . On peut utiliser cette information pour établir que si le produit scalaire de deux vecteurs est égal à 0, alors ces vecteurs sont perpendiculaires.
Des lignes, des segments ou des vecteurs sont colinéaires s'ils sont tous sur la même ligne, ou se dirigent tous dans la même direction; s'ils sont parallèles, en fait. Des points sont alignés s'ils sont portés par la même droite.
Deux droites sont sécantes si et seulement si leur intersection est un singleton. rappel . Deux droites sont coplanaires si et seulement si elle sont parallèles ou sécantes. Pour montrer que deux droites ne sont pas coplanaires, il suffit de montrer qu'elles ne sont ni parallèles ni sécantes.
On dit que 2 vecteurs et sont colinéaires lorsqu'il existe un réel tel que . Pour k = 0, , le vecteur nul est donc colinéaire à tout autre vecteur.
« Lorsque deux plans sont parallèles, tout plan coupant l'un coupe l'autre et les droites d'intersection sont parallèles ». « Trois points coplanaires sont toujours alignés ». « Trois points alignés sont toujours coplanaires ». « Quatre points non alignés forment toujours un plan ».
Indice : En géométrie vectorielle, pour montrer que 4 points sont coplanaires, il faut montrer que trois des vecteurs qu'ils forment sont coplanaires. Pour ça, il faut exprimer un des trois vecteurs en fonction des deux autres.
Points alignés
On dit que trois points ou plus sont alignés s'ils sont sur une même droite. A, B et C sont alignés car A, B et C sont sur la même droite (d).
Si AC + CB = AB alors C appartient au segment [AB] donc les points sont alignés. dans le triangle. Propriété : Si un point M appartient à la médiatrice de [AB] alors AM = BM. Si AM = BM alors M appartient à la médiatrice de [AB].
L'espace vectoriel R 3 a pour dimension 3 . La partie { u , v , w } contient exactement trois vecteurs, aussi, pour démontrer que ( u , v , w ) est une base de R 3 , il suffit de démontrer que la partie { u , v , w } est une partie libre. Le triplet ( 0 , 0 , 0 ) est l'unique solution du système ( S ) .
Pour déterminer si trois points sont alignés, il existe plusieurs méthodes. Les points A, B et C sont alignés ⇔ (AB) et (AC) ont le même cœfficient directeur . A(3 ; 7), B(0 ; –2) et C(1 ; 1) sont-ils alignés ? Les deux cœfficients directeurs sont égaux à 3, donc A, B et C sont alignés.
On appelle vecteur directeur de (D) tout vecteur non nul colinéaire à . Autrement dit, le vecteur donne la direction de la droite (D). Tous les vecteurs colinéaires non nuls à sont aussi vecteurs directeurs de (D) : il existe donc une infinité de vecteurs directeurs d'une droite, tous colinéaires entre eux.
En particulier, le produit scalaire est utile pour : calculer l'angle entre deux vecteurs ; déterminer certaines grandeurs physiques, comme le travail d'une force ; résoudre certaines inéquations.
Soit deux vecteurs →u et →v; le nombre réel résultant de l'opération notée →u⋅→v et telle que →u⋅→v=‖→u‖⋅‖→v‖cosθ, où ‖→u‖ désigne la norme du vecteur u, ‖→v‖ désigne la norme du vecteurv et θ est la mesure de l'angle formé entre les directions des deux vecteurs.
les vecteurs ont la même direction ou bien l'un des deux vecteurs est le vecteur nul 0 ; les vecteurs u et v sont colinéaires si et seulement si il existe un nombre réel k tel que u → = k v → \overrightarrow{u}=k\overrightarrow{v} u =kv .