À l'aide des équations, on reconnait deux droites parallèles confondues lorsque leur pente est identique (car ce sont des droites parallèles) et que leur ordonnée à l'origine est identique (puisque ces droites se confondent).
On obtient un système impossible (avec une égalité du type 1=0 ). Dans ce cas l'intersection est vide et les droites ne sont pas sécantes. On obtient un système avec une infinité de solutions. Dans ce cas, les deux droites sont confondues.
Deux droites du plan affine sont parallèles si et seulement si elles n'ont aucun point commun ou si elles sont confondues.
Les droites (AB) et (CD) sont perpendiculaires à la droite (BC). Prouver que les droites (AB) et (CD) sont parallèles. On sait que : (AB) ⊥ (BC) et (CD) ⊥ (BC). Si deux droites sont perpendiculaires à une même troisième droite alors elles sont parallèles.
Si deux droites parallèles coupées par une sécante forment deux angles alternes-internes, alors ces angles sont de même mesure. La réciproque à cette règle est également vraie : Si deux angles alternes-internes de même mesure sont définis par deux droites et une sécante, alors ces deux droites sont parallèles.
Le théorème de Thalès sert donc à calculer les longueurs dans une figure géométrique composée de triangles.
Si deux droites forment avec une sécante des angles correspondants égaux, alors ces droites sont parallèles. Si deux droites forment avec une sécante des angles alternes-internes égaux, alors ces deux droites sont parallèles.
Réciproque du théorème de Thalès : Si, d'une part les points A,D,C et d'autre part les points A,E,B sont alignés dans le même ordre et si les deux premiers rapports de Thalès sont égaux ( A D A C = A E A B ) alors les droites (DE) et (BC) sont parallèles.
Si deux droites sont parallèles à une même droite, alors elles sont parallèles entre elles. Si deux droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles. Si deux droites sont parallèles, toute perpendiculaire à l'une est alors perpendiculaire à l'autre.
De plus, on vérifiera que les plans 𝑃 et 𝑄 sont distincts, c'est-à-dire qu'ils n'ont pas de points d'intersection. Si deux plans de vecteurs normaux colinéaires s'intersectent, alors ils sont confondus.
Dans un plan cartésien, on peut trouver les coordonnées du point d'intersection de deux courbes (comme par exemple deux droites) en résolvant le système d'équations. Soit les droites dont les équations sont y = x – 4 et y = –2x + 5, alors : x – 4 = –2x + 5. On représente ces droites dans un plan cartésien.
Deux droites sont orthogonales si leurs parallèles respectives passant par un même point sont perpendiculaires. Exemple : On considère le parallélépipède rectangle ABCDEFGH : Les droites (AB) et (CG) sont orthogonales car la parallèle (DC) à (AB) est perpendiculaire en C à (CG).
Des droites sécantes sont des droites qui se coupent en un seul point (commun). Ce point est appelé « point d'intersection ». Droites perpendiculaires : Des droites perpendiculaires sont des droites sécantes dont l'intersection forme un angle droit.
Si les points A, B et C appartiennent à la même droite, on peut en conclure qu'ils sont alignés. Les points A, B et C appartiennent à la même droite ; ils sont donc alignés.
Deux droites parallèles sont deux droites qui ne sont pas sécantes Exemple : Les droites (d1) et (d2) sont parallèles. Remarque : Deux droites sont parallèles lorsqu'elles ne se coupent pas.
La réciproque du théorème de Thalès sert à montrer que deux droites sont parallèles.
Théorème de Pythagore → En général, il est utilisé pour calculer les côtes d'un triangle rectangle, les diagonales d'une figure, prouver qu'un triangle est rectangle. Théorème de Thalès → En général, il est utilisé pour démontrer que des droites sont parallèles.... Bonne journée !
Ainsi, AB/AC = AE/AD, donc d'après le théorème de Thalès, (BE) et (CD) sont parallèles. En fait, si les points sont au milieu des segments, les fractions que l'on va calculer seront toujours égales à 1/2 (ou 2 si on prend la fraction inverse), et ce quelle que soit les longueurs de chaque côté.
Les droites d'équations y = px + d et y = p'x + d' sont parallèles p = p', c'est-à-dire si et seulement si elles ont le même coefficient directeur. Les droites d'équations y = px + d et y = p'x + d' sont sécantes p ≠ p', c'est-à-dire si et seulement si leurs coefficients directeurs sont différents.
1. Si deux droites sont perpendiculaires à une même droite, alors elles sont parallèles. 2. Si deux droites sont parallèles, alors toute droite perpendiculaire à l'une est perpendiculaire à l'autre.
Si deux angles sont opposés par le sommet, alors ils sont égaux. Si deux angles alternes internes (ou correspondants) sont formés par deux droites parallèles et une sécante, alors ils sont égaux.
Si les points O, A, F, d'autre part, et O, B, G, d'autre part, sont alignés et dans le même ordre OA/OF = OB/OG.
La réciproque du théorème Pythagore dit que « si un triangle est rectangle, alors le carré de la plus grande longueur (l'hypoténuse) est égale à la somme des carrés des longueurs des deux autres côtés ». La réciproque de Pythagore permet donc de montrer si un triangle est rectangle.
Il suffit de démontrer que l'angle formé par les deux droites est un angle droit. I Il suffit d'utiliser la propriété suivante : " Si deux droites sont parallèles, toute droite perpendiculaire à l'une est perpendiculaire à l'autre. "