On dit que trois droites sont concourantes si elles se coupent en un seul point , appelé le point de concours de ces trois droites. Théorème et définition. Dans un triangle A B C quelconque, les trois hauteurs sont concourantes et leur point de concours s'appelle l'
Soit H le point d'intersection des hauteurs issues de A et B dans le triangle A B C ABC ABC. (HC) est donc la hauteur issue de C dans le triangle A B C ABC ABC. Le point H appartient donc aux trois hauteurs du triangle A B C ABC ABC. Les trois hauteurs d'un triangle sont donc concourantes.
La hauteur issue de A est perpendiculaire à [BC] donc à [B'C']. Comme elle passe de plus par son milieu, c'est la médiatrice du segment [B'C']. On démontre ainsi que les trois hauteurs du triangle ABC sont les trois médiatrices du triangle A'B'C'. Par conséquent, elles sont concourantes.
Les médiatrices des trois côtés sont (bien) concourantes en . Donc, si on pose r = O A = O B = O C , les trois sommets du triangle A B C appartiendraient bien à un même cercle de centre et de rayon , qu'on appelle le cercle circonscrit au triangle A B C .
Théorème Les médianes d'un triangle sont concourantes (elles se coupent en un même point). Leur point d'intersection est le centre de gravité. Le centre de gravité est situé aux deux tiers d'une médiane en partant du sommet dont elle est issue.
1) Si les droites sont concourantes en m (nécessairement différent de p), la droite ∆ passe aussi par m. Comme elle passe par m et p c'est donc D et son équation est proportionnelle `a δ : δ − λδ = λ δ .
Droites concourantes. Droites passant par un même point : Lieu des points équidistants de deux droites concourantes : deux droites perpendiculaires formées par les bissectrices des quatre angles que déterminent les deux droites.
Ainsi, G G est sur la droite (AA′) ( A A ′ ) . De même, G G est sur la droite (BB′) ( B B ′ ) et G G est sur la droite (CC′) ( C C ′ ) . Ainsi, les trois droites sont concourantes en G G . De plus, puisque G G est le barycentre de (A,1) ( A , 1 ) et (A′,2) ( A ′ , 2 ) , on a −−→AG=23−−→AA′ A G → = 2 3 A A ′ → .
Le point d'intersection des hauteurs s'appelle l'orthocentre.
Son centre O est le point de concours des trois médiatrices du triangle.
On dit que trois droites sont concourantes si elles se coupent en un seul point , appelé le point de concours de ces trois droites. Théorème et définition. Dans un triangle A B C quelconque, les trois hauteurs sont concourantes et leur point de concours s'appelle l'orthocentre du triangle A B C .
Pour calculer la hauteur du parallélépipède rectangle, on divise son volume par sa surface de base.
Trace une droite perpendiculaire au deuxième côté [BC] et qui passe par le sommet opposé A. Trace une droite perpendiculaire au troisième côté [CA] et qui passe par le sommet opposé B. Les droites (h1), (h2) et (h3) sont les 3 hauteurs du triangle.
Quelle est la hauteur d'un triangle ABC ? Si ABC est un triangle, la hauteur issue de A est la droite passant par A et perpendiculaire au côté BC. Le point de la hauteur située sur droite (BC) est le pied de la hauteur. On définit de même les hauteurs issues de B, et de C.
Dans un triangle il y a trois sommets, donc il y a trois hauteurs. Le point d'intersection des trois hauteurs d'un triangle s'appelle l'orthocentre. Le point D est l'orthocentre du triangle.
L'orthocentre est la droite qui passe par le centre du cercle et le barycentre du triangle. Il sert à calculer une aire, un volume ou une distance. Pour tracer l'orthocentre d'un triangle, il faut connaître les propriétés de ce triangle.
Pour déterminer l'abscisse du point d'intersection avec l'axe des abscisses, il faut trouver la valeur de x pour laquelle y = 0 y=0 y=0 . Pour déterminer l'ordonnée du point d'intersection avec l'axe des ordonnées, il faut trouver la valeur de y pour laquelle x = 0 x=0 x=0 .
En mathématiques, des droites concourantes sont des droites qui ont un point d'intersection commun, ce point étant appelé point de concours.
Dans un plan cartésien, on peut trouver les coordonnées du point d'intersection de deux courbes (comme par exemple deux droites) en résolvant le système d'équations. Soit les droites dont les équations sont y = x – 4 et y = –2x + 5, alors : x – 4 = –2x + 5.
Soient A, B et C trois points de l'espace de coordonnées respectives (xA, yA, zA), (xB, yB, zB) et (xC, yC, zC) et soient a, b et c trois nombres réels tels que a+b+c ≠ 0. Soit G le barycentre de (A, a), (B, b) et (C, c) et soient (xG, yA, zA) les coordonnées de G dans le repère .
Points coplanaires
Deux points ou trois points sont toujours coplanaires. En effet, deux points sont toujours sur une même droite qui peut être plongée dans un plan. De même, trois points, ou bien sont alignés et la droite peut être plongée dans un plan, ou bien définissent un plan.
Pour montrer que les points P ,Q et R sont alignés, il suffit de montrer, par exemple, que Q est le barycentre de P et de R avec des coefficients à déterminer. Le point P est donc le barycentre de (B , 1) et (C , -2). Par ailleurs, R est le milieu du segment [AB] donc . (Q est donc le barycentre de (A , 1) et (C , 2)).
concourant, concourante
1. Qui tend vers un même point, un même but : Efforts concourants. 2. Se dit de lieux géométriques qui concourent.
Lorsque trois droites, ou plus, se coupent en un même point, on dit qu'elles sont concourantes.
Des droites parallèles distinctes sont des droites qui ne se croisent jamais et dont la distance les séparant reste toujours la même. Des droites parallèles possèdent la même inclinaison et n'ont aucun point en commun.