Si deux triangles ont leurs côtés deux à deux de même longueur, alors ces deux triangles sont égaux. Si deux triangles ont un angle de même mesure compris entre des côtés deux à deux de même longueur, alors ces deux triangles sont égaux.
Dans deux triangles semblables, les côtés opposés à des angles égaux sont appelés « côtés homologues ». Propriété : Si deux triangles sont semblables alors les longueurs des côtés de l'un sont proportionnelles aux longueurs des côtés de l'autre.
Le triangle isocèle
ABC est un triangle isocèle : il a deux côtés égaux ; il a deux angles égaux ; il a un axe de symétrie.
Propriété (E2a) Si deux triangles ont deux à deux un côté de même longueur compris entre deux angles de même mesure alors ils sont égaux. Propriété (E2b) Si deux triangles ont deux à deux un angle de même mesure compris entre deux côtés de même longueur alors ils sont égaux.
Propriétés du parallélogramme
Le centre du parallélogramme est le centre de symétrie. Les côtés opposés sont parallèles. Les côtés opposés sont de même longueur. Les angles opposés sont de même mesure.
quadrilatère est un parallélogramme ? Si les côtés opposés d'un quadrilatère sont parallèles alors c'est un parallélogramme. Si les côtés opposés d'un quadrilatère sont de même longueurs alors c'est un parallélogramme. Si les diagonales d'un quadrilatère ont le même milieu alors ce quadrilatère est un parallélogramme.
Un triangle est dit équilatéral si ses trois côtés sont égaux et si ses angles sont également égaux (60° chacun).
Un triangle équilatéral est un triangle dont les trois côtés sont isométriques (de même mesure).
Si les triangles ont leurs côtés homologues de même longueur on dit qu'ils sont isométriques. Si deux triangles ont leurs côtés homologues parallèles alors ils sont semblables et sont appelés triangles homothétiques.
La réciproque du théorème Pythagore dit que « si un triangle est rectangle, alors le carré de la plus grande longueur (l'hypoténuse) est égale à la somme des carrés des longueurs des deux autres côtés ». La réciproque de Pythagore permet donc de montrer si un triangle est rectangle.
Si deux droites parallèles, toute perpendiculaire à l'une est perpendiculaire à l'autre.
On applique le théorème de Pythagore dans le triangle A B C ABC ABC rectangle en C C C. Dans un triangle rectangle, le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Soit : A B 2 = A C 2 + B C 2 AB^2=AC^2+BC^2 AB2=AC2+BC2.
Il existe quatre principaux types de triangles qui ont chacun des propriétés particulières : le triangle quelconque, le triangle isocèle, le triangle équilatéral et le triangle rectangle. Un triangle possède trois côtés, trois sommets et trois angles.
Lorsqu'on nomme un triangle isocèle, on précise généralement son sommet principal. Grâce à cette information, il est possible d'identifier les 2 côtés de même longueur. Le sommet commun aux 2 côtés de même longueur est le sommet B. On dit que le triangle ABC est isocèle en B.
Un triangle isocèle possède deux côtés égaux et deux angles égaux.
Un triangle rectangle isocèle est un triangle ayant un angle droit et dont deux côtés sont de la même longueur. Un triangle ABC est rectangle et isocèle lorsque la longueur du côté [AB] est égale à la longueur du côté [AC] et que l'angle A vaut 90°.
De fait, tout triangle dont la somme de deux angles mesure 90° est nécessairement un triangle rectangle. Un triangle rectangle comportant deux côtés égaux est isocèle. Tout triangle comportant deux angles de 45° chacun est un triangle rectangle isocèle.
le triangle équilatéral, qui a 3 3 3 côtés de même longueur, ses 3 3 3 angles de mesure 60 ° 60\degree 60° et 3 3 3 axes de symétrie ; et le triangle rectangle qui a un angle droit ( 90 ° 90\degree 90°) et aucun axe de symétrie, sauf s'il est aussi isocèle.
Une façon est d'utiliser la formule pour calculer l'aire d'un triangle quelconque : A = 1/2 * base * hauteur. L'autre est d'utiliser la formule trigonométrique : A = 1/2 * a * b * sin(c). La formule que tu utiliseras dépendra des données présentées.
Définition. Un triangle isocèle est un triangle qui a deux côtés de même longueur. Remarque : on code l'égalité des longueurs en utilisant le même symbole.
Il suffit de démontrer que le quadrilatère ( non croisé ) a deux côtés opposés parallèles et de même longueur. Il suffit de démontrer que le quadrilatère ( non croisé ) a des angles opposés de même mesure.
- Si un quadrilatère a ses angles opposés deux à deux de même mesure alors c'est un parallélogramme. - Si un quadrilatère a trois angles droits (au moins) alors c'est un rectangle. - Si un quadrilatère a des diagonales de même longueur et qui se coupent en leur milieu alors c'est un rectangle.
les diagonales ont le même milieu ; les côtés opposés sont parallèles ; les côtés opposés ont la même longueur ; deux côtés opposés sont parallèles et ont la même longueur.