Plus la distribution est dispersée c'est-à-dire moins les valeurs sont concentrées autour de la moyenne, plus l'écart-type sera élevé. L'écart-type ne peut pas être négatif. Un écart-type proche de 0 signifie que les valeurs sont très peu dispersées autour de la moyenne (représentée par la droite en pointillés).
Une valeur d'écart type élevée indique que les données sont dispersées. D'une manière générale, pour une loi normale, environ 68 % des valeurs se situent dans un écart type de la moyenne, 95 % des valeurs se situent dans deux écarts types et 99,7 % des valeurs se situent dans trois écarts types.
Pour comprendre les résultats du calcul de l'écart type, voici ce qu'il faut retenir : Entre 0 et 3 %, la volatilité de l'actif est très faible et le risque est moindre. Entre 3 et 8 %, l'actif est peu volatil et le risque est faible.
Un écart-type faible nous indique qu'en moyenne, les points de données sont proches de la moyenne et un écart-type élevé nous indique qu'en moyenne, les points de données sont éloignés de la moyenne.
Si l'écart-type est faible, cela signifie que les valeurs sont peu dispersées autour de la moyenne (série homogène) et inversement (série hétérogène).
L'écart type sert à calculer l'intervalle de confiance et la valeur de p. Une valeur d'écart type élevée indique que les données sont dispersées. Plus la valeur est élevée, moins les intervalles de confiance sont précis (ils sont plus étendus) et moins les tests sont puissants.
Notes. La fonction ECARTYPE part de l'hypothèse que les arguments ne représentent qu'un échantillon de la population. Si vos données représentent l'ensemble de la population, utilisez la fonction ECARTYPEP pour en calculer l'écart type. L'écart type est calculé à l'aide de la méthode « n-1 ».
Dans la formule de l'écart type, ce qui se trouve sous la racine carrée se nomme la variance. Ainsi, on peut résumer le calcul de l'écart type à l'aide de l'égalité suivante. écart type=√variance écart type = variance Autrement dit, la variance correspond à la moyenne du carré des écarts à la moyenne.
L'erreur type est la racine carrée de la variance d'échantillonnage. Cette mesure est plus facile à interpréter puisqu'elle donne une indication de l'erreur d'échantillonnage en utilisant la même échelle que l'estimation alors que la variance est basée sur les différences au carré.
L'écart-type est un outil statistique qui permet d'estimer la dispersion des valeurs par rapport à la moyenne. Plus l'écart-type a une valeur élevée, plus les données sont dispersées par rapport à la moyenne. L'unité de l'écart-type est la même que celle de la moyenne.
L'écart-type est dans la même unité de mesure que les données. Même avec peu d'habitude, il est donc assez simple à interpréter. En revanche, la variance a davantage sa place dans les étapes intermédiaires de calcul que dans un rapport.
Une variance est toujours positive. La valeur d'une variance ne peut être interprétée que par comparaison à la valeur d'une norme ou d'une autre variance. Si une variance est nulle, cela veut dire que toutes les observations sont égales à la moyenne, ce qui implique qu'il n'y a aucune variation de celles-ci.
La variance mesure la manière dont des points de données varient par rapport à la moyenne, tandis que l'écart type mesure la distribution de données statistiques. Penchons-nous sur un exemple. Deux groupes d'étudiants ont répondu à un questionnaire noté sur 10 points.
Il faut en repérer la source, l'auteur, la date de publication, le champ (population étudiée, date des données, lieu concernant les données). Il s'agit ensuite de comprendre les données. Pour cela, il peut être utile de repérer le total en lignes ou en colonnes. Enfin, il faut analyser les données du tableau.
On effectue leur différence. Exemple 1 : Calculons la moyenne de la série des notes de Pierre : 4 • 9 • 12 • 13 • Somme des valeurs : 4 + 9 + 12 + 13 = 38 • Effectif total : 4 (il y a 4 valeurs) • Moyenne : 38 : 4 = 9,5 La moyenne de cette série est de 9,5. C'est comme si Pierre avait obtenu 4 fois la note 9,5.
Pour deux ensembles de données ayant la même moyenne, celui dont l'écart-type est le plus grand est celui dans lequel les données sont les plus dispersées par rapport au centre. L'écart-type est égal à 0 zéro si toutes les valeurs d'un ensemble de données sont les mêmes (parce que chaque valeur est égale à la moyenne).
La formule avec n-1 ne concerne pas l'écart type de l'échantillon. Le n-1 sert surtout à avoir un estimateur sans biais lorsque tu remplaces la moyenne par la moyenne empirique.
Le coefficient de variation (CV) est le rapport de l'écart-type à la moyenne. Plus la valeur du coefficient de variation est élevée, plus la dispersion autour de la moyenne est grande. Il est généralement exprimé en pourcentage.
La formule pour calculer l'Écart-type est =ECARTYPE. STANDART(votre_plage:de_données). Le résultat de notre Écart-type est 114,386176.
La fonction ECARTYPE. PEARSON part de l'hypothèse que les arguments représentent l'ensemble de la population. Si vos données ne représentent qu'un échantillon de cette population, utilisez la fonction ECARTYPE pour en calculer l'écart type. S'il s'agit d'échantillons de taille importante, les fonctions ECARTYPE.
Plus l'écart relatif est petit, plus la grandeur mesurée est satisfaisante car elle est proche de la grandeur de référence attendue. Cet écart s'exprime de préférence en pourcentage (%) et est toujours positif : le calcul change donc en fonction de la grandeur la plus grande.