Par exemple, le cosinus est le rapport entre le côté adjacent à l'angle par rapport à l'hypoténuse. Le sinus est le rapport entre le côté opposé à l'angle par rapport à l'hypoténuse.
Alors je peux tout simplement te dire : tu utilises le cosinus, le sinus ou la tangente quand tu as les données pour pouvoir les calculer (i.e soit le côté adjacent et l'hypoténuse, soit le côté opposé et l'hypoténuse, soit le côté adjacent et le côté opposé).
Sin = Opposé / Hypoténuse (S.O.H.) Cos = Adjacent / Hypoténuse (C.A.H.) Tan = Opposé / Adjacent (T.O.A.)
En géométrie, le calcul du cosinus d'un angle est utilisé en trigonométrie. Il peut servir par exemple à couper un gâteau en plusieurs parts parfaitement égales.
Trigonométrie Exemples
La valeur exacte de cos(45) est √22 . Le résultat peut être affiché en différentes formes.
On peut résumer ainsi chacune de ces formules trigonométriques : Cosinus(angle) = Adjacent ÷ Hypothénuse. Sinus(angle) = Opposé ÷ Hypothénuse. Tangente(angle) = Opposé ÷ Adjacent.
Dans un triangle rectangle, le cosinus d'un angle est le rapport de la longueur du côté adjacent par la longueur de l'hypoténuse. Cosinus  = Côté adjacent (noté a) / Hypoténuse (noté h).
En géométrie, le sinus d'un angle dans un triangle rectangle est le rapport entre la longueur du côté opposé à cet angle et la longueur de l'hypoténuse. La notion s'étend aussi à tout angle géométrique (compris entre 0 et 180°). Dans cette acception, le sinus est un nombre compris entre 0 et 1.
Le sinus de l'angle droit donne Opposé / Hypoténuse soit Hypoténuse / Hypoténuse = 1. Et le cosinus de l'angle droit donne Adjacent / Hypoténuse soit nul / Hypoténuse = 0 . La tangente, quant à elle, n'est pas définie car cela conduirait a une division par zéro.
Les relations Arcsinus, Arccosinus et Arctangente permettent de calculer la valeur d'un angle aigu d'un triangle rectangle dont on connaît les côtés.
Quand on cherche la mesure d'un des angles aigus d'un triangle et que l'on connaît la longueur de son côté opposé et de l'hypoténuse, on peut utiliser la formule du sinus pour calculer la mesure de l'autre angle aigu du triangle.
sin(10°) ≈ 0,174 (en descendant : troisième colonne en partant de la gauche) ; sin(50°) ≈ 0,766 (en montant : troisième colonne en partant de la droite).
Points remarquables : sin(0)=0.
Le cosinus d'un angle aigu est égal au rapport de la longueur du côté adjacent à l'angle par celle de l'hypoténuse du triangle.
Dans un triangle rectangle, le cosinus d'un angle, noté « cos », est égal au rapport (quotient) de la longueur du côté adjacent à cet angle sur la longueur de l'hypoténuse.
Dans un triangle rectangle, on appelle le cosinus d'un angle aigu le quotient de la mesure de la longueur du côté adjacent à cet angle par celle de l'hypoténuse du triangle.
Trigonométrie Exemples
La valeur exacte de cos(30°) cos ( 30 ° ) est √32 . Le résultat peut être affiché en différentes formes.
Appliquez l'angle de référence en trouvant l'angle avec des valeurs trigonométriques équivalentes dans le premier quadrant. La valeur exacte de cos(30) est √32 .
Trigonométrie Exemples
La valeur exacte de cos(90) est 0 .
En d'autres termes, le sinus d'un angle est négatif pour tout angle du troisième ou du quatrième quadrant.
Les fonctions sinus et cosinus n'ont pas de limite en l'infini.
Le sinus d'un angle aigu dans un triangle rectangle est le quotient de son côté opposé par l'hypoténuse.
Trigonométrie Exemples
La valeur exacte de sin(30) est 12 . Le résultat peut être affiché en différentes formes.