Définition Un angle droit est un angle dont la mesure est égale à 90°. Codage Un angle droit se code à l'aide d'un petit carré (ou rectangle). Définition Un angle plat est un angle dont la mesure est égale à 180°.
Si des points A(xA;yA), B(xB;yB), C(xC;yC) et D(xD;yD) sont alignés alors les droites AB, AC et AD sont confondues, si elles ne sont pas verticales alors elles doivent avoir le même coefficient directeur.
On rappelle que trois points A, B et C définissent un plan si et seulement s'ils ne sont pas alignés. Les trois points A, B et C définissent un plan si et seulement s'ils ne sont pas alignés.
Propriété : Si trois points A B et C sont tels que l'angle ABC est nul, alors les points A B et C sont alignés.
On a donc a BCD = a CBA + a ABD = 90° + 90° = 180° L'angle a CBD étant plat alors les points B, C et D sont alignés.
Action d'aligner, fait d'être aligné : L'alignement des enfants devant la salle de classe. 2. Ligne droite formée par des objets alignés : Des alignements d'arbres.
On dit que deux vecteurs sont colinéaires si, en multipliant les composantes de l'un des vecteurs par un scalaire k (constante), on obtient les composantes de l'autre vecteur. Donc, si le vecteur →u est colinéaire au vecteur →v , alors il existe un scalaire k tel que →u=k→v u → = k v → .
Un segment est un ensemble fini de points alignés. Il y a deux extrémités : ce sont les points de début et de fin du segment. On nomme le segment avec 2 lettres majuscules entre crochets fermés. Ces deux lettres sont les noms de deux points qui sont les extrémités du segment.
Définition de colinéaire adjectif
Mathématiques Vecteurs colinéaires, qui ont la même direction.
1) Dans l'espace, deux plans sont sécants si et seulement si ils ne sont pas parallèles (au sens large, c'est-à-dire ni parallèles ni confondus). Autrement dit, c'est un peu comme deux droites d'un même plan.
deux plans sécants peuvent être orthogonaux. Ces plans n'étant pas parallèles, ils sont sécants. On peut donc également les qualifier de plans perpendiculaires. Deux plans sont perpendiculaires si et seulement si leurs vecteurs normaux sont orthogonaux.
Si sont deux vecteurs non-colinéaires du plan P, le vecteur est normal au plan P si et seulement si est orthogonal aux vecteurs . Dans un repère orthonormal, tout plan P a une équation de forme ax + by + cz + d = 0 avec a, b et c non-nuls et le vecteur est normal à P.
On dit que trois points ou plus sont alignés s'ils sont sur une même droite. A, B et C sont alignés car A, B et C sont sur la même droite (d).
Deux droites sont coplanaires s'il existe un plan qui les contiennent toutes les deux. Les positions relatives de deux droites coplanaires sont simples : elles ne peuvent être que parallèles ou sécantes.
Il suffit de prendre un vecteur colinéaire à pour obtenir une autre représentation paramétrique. Une équation paramétrique du plan P passant par A (1 ; 2 ; 3) et de vecteurs directeurs (1 ; 0 ; 1) et (1 ; 2 ; 5) est avec t et t' ∈ . La représentation paramétrique d'une droite est .
En mathématiques, et plus précisément en géométrie, la droite normale à une courbe ou à une surface en un point est une droite perpendiculaire à la tangente ou au plan tangent en ce point. Tout vecteur directeur de cette droite est appelé vecteur normal à la courbe ou à la surface en ce point.
Définition : Vecteurs parallèles dans l'espace
Les vecteurs ⃑ ? et ⃑ ? sont parallèles si, et seulement si, ce sont des multiples scalaires l'un de l'autre : ⃑ ? = ? ⃑ ? , où ? est un nombre réel non nul.
Definition. - par convention, le vecteur nul est orthogonal à tout vecteur. Les vecteurs et sont dits orthogonaux si les droites (AB) et (AC) sont perpendiculaires.
Pour nommer une droite, on utilise le nom des deux points situés à ses extrémités et on les écrit entre parenthèses. Par exemple, une droite allant du point A au point B peut s'écrire (AB). Il ne faut pas confondre avec [AB], qui est le nom du segment ayant pour extrémités les points A et B.
Ces deux points sont appelés les extrémités. Définition/Explication (ne pas apprendre) Si l'on considère une droite (d) , un point A placé sur (d) partage cette droite en deux demi-droites. Représentation On représente une demi-droite par une ligne droite bordée d'un trait.
En géométrie, un point est un objet sans taille ni dimension, souvent défini comme l'intersection de deux droites. Le point est défini uniquement par sa position. Il est souvent représenté par un minuscule point tracé à la pointe du stylo ou par une petite croix symbolisant l'intersection de deux droites.
Soit un repère (O;i;j). Deux vecteurs u(x;y) et v(x'y') sont colinéaires si et seulement si leurs coordonnées sont proportionnelles : il existe un réel k tel que x= kx' et y=ky').
On dit que deux vecteurs sont opposés lorsqu'ils ont la même direction, la même longueur, mais sont de sens opposés.
Propriété : Deux vecteurs colinéaires non nuls ont la même direction. Conséquences géométriques : Dire que les vecteurs et sont colinéaires signifie que les points A, B, C sont alignés. Dire que les vecteurs non nuls et sont colinéaires signifie que les droites (AB) et (CD) sont parallèles.