Si dans un triangle, le carré de la longueur du plus grand côté est égal à la somme des carrés des longueurs des deux autres côtés, alors ce triangle est rectangle et l'angle droit est l'angle opposé au plus grand côté, et le plus grand côté de ce triangle est son hypoténuse.
D'après le théorème de Pythagore, si, dans un triangle, le carré du côté le plus long est égal à la somme des carrés des deux autres côtés, alors c'est un triangle rectangle. Si BC2 = AC2 + AB2 alors le triangle ABC est rectangle en A.
Une méthode consiste à utiliser la propriété des côtés, qui stipule que si les trois côtés d'un triangle sont égaux aux trois côtés d'un autre triangle, alors les triangles sont congruents.
À l'aide du cercle circonscrit
Si l'un des côtés d'un triangle est un diamètre de son cercle circonscrit, alors ce triangle est rectangle et ce diamètre est son hypoténuse. Soit \Gamma le cercle circonscrit au triangle ABC et AB un diamètre de \Gamma.
D'après le théorème de Pythagore : Si, dans un triangle, le carré du côté le plus long n'est pas égal à la somme des carrés des deux autres côtés, alors ce triangle n'est pas un triangle rectangle.
Exemple : Soit un triangle ABC tel que AB = 5 cm, BC = 12 cm et AC = 13 cm. Montrer que le triangle ABC est rectangle. L'égalité de Pythagore est vérifiée, le triangle ABC est donc rectangle en B car [AC] est l'hypoténuse. (On parle de réciproque du théorème de Pythagore).
Selon le théorème de Pythagore, le carré de l'hypoténuse est égal à la somme des carrés des longueurs des côtés à angle droit (les jambes).
La réciproque du théorème Pythagore dit que « si un triangle est rectangle, alors le carré de la plus grande longueur (l'hypoténuse) est égale à la somme des carrés des longueurs des deux autres côtés ». La réciproque de Pythagore permet donc de montrer si un triangle est rectangle.
En géométrie euclidienne, un triangle rectangle est un triangle dont l'un des angles est droit. Les deux autres angles sont alors complémentaires, de mesure strictement inférieure. On nomme alors hypoténuse le côté opposé à l'angle droit. Les deux autres côtés, adjacents à l'angle droit, sont appelés cathètes.
Si un quadrilatère a trois angles droits alors c'est un rectangle. Si les diagonales d'un quadrilatère se coupent en leur milieu et sont de même longueur alors c'est un rectangle. Si un parallélogramme a un angle droit alors c'est un rectangle.
Il existe quatre principaux types de triangles qui ont chacun des propriétés particulières : le triangle quelconque, le triangle isocèle, le triangle équilatéral et le triangle rectangle. Un triangle possède trois côtés, trois sommets et trois angles.
Si deux droites parallèles, toute perpendiculaire à l'une est perpendiculaire à l'autre.
Le théorème pourra s'appliquer seulement dans deux cas (voir le schéma ci-dessous) : Deux droites sécantes et deux droites parallèles viennent former deux triangles distincts, reliés entre eux par un sommet.
Par les aires des triangles semblables
Les aires des trois triangles semblables AHC, CHB et ACB, portées par les côtés AC, CB et AB sont proportionnelles aux carrés de ces côtés. L'égalité précédente donne donc le théorème de Pythagore, en simplifiant par le coefficient de proportionnalité : AC2 + BC2 = AB2.
Théorème de Thalès : Si, deux droites parallèles coupent deux droites sécantes alors elles déterminent deux triangles dont les côtés correspondants ont des longueurs proportionnelles.
Règle. La somme des angles intérieurs d'un triangle est toujours égale à 180∘ . Ainsi, il est possible de déduire la mesure du troisième angle lorsque les mesures des deux autres sont connues.
De fait, tout triangle dont la somme de deux angles mesure 90° est nécessairement un triangle rectangle. Un triangle rectangle comportant deux côtés égaux est isocèle. Tout triangle comportant deux angles de 45° chacun est un triangle rectangle isocèle.
Propriété : Un rectangle est un parallélogramme particulier. En effet, ses côtés opposés sont parallèles et de même longueur et ses diagonales se coupent en leur milieu . Propriété : Un rectangle a deux axes de symétries : les médiatrices de ces cotés. Propriété : Les diagonales d'un rectangle sont de même longueur.
[AB] et [AC] sont les côtés de l'angle droit, [BC] est l'hypoténuse. Nous pouvons appliquer le théorème de Pythagore et écrire : BC2 = AB2 + AC2. Alors AC2 = BC2 − AB2 ou encore AC2 = 18,752−152.
dom f−1=ima f et ima f−1=dom f. Afin de trouver la règle de la fonction réciproque de f, il suffit de poser x=f(y) et d'isoler la variable y. Déterminons si la fonction f(x)=(x−1)3+2 est injective. Si oui, trouvons la fonction réciproque de f.
Comme f−1 est composée des couples obtenus en intervertissant dans f les variables x et y , on a donc que dom f−1=ima f dom f − 1 = ima f et ima f−1=dom f ima f − 1 = dom f .
Pythagore est bien connu pour le théorème de géométrie qui porte son nom : le théorème de Pythagore, qui a pour principe : "dans un triangle rectangle, le carré de l'hypoténuse est égal à la somme des carrés des deux autres côtés".
Le périmètre du triangle est la somme des trois côtés. Ce principe est valable pour tout type de triangle. Périmètre du triangle = Côté+Côté+Côté. P=C+C+C.
Dans le quadrilatère ABCD, les diagonales ont le même milieu O et ont la même longueur. On admettra la propriété suivante : Propriété 7 : Si un quadrilatère a ses diagonales qui ont le même milieu et la même longueur, alors ce quadrilatère est un rectangle.