Propriété : Si un point est équidistant des deux extrémités d'un segment, alors ce point appartient à la médiatrice de ce segment.
médiatrice n.f. Droite perpendiculaire à un segment et passant par son milieu. médiateur adj.
La médiatrice d'un segment est la droite qui passe par le milieu de ce segment, et qui lui est perpendiculaire. La bissectrice est une demi-droite qui coupe un angle en deux.
Théorème. Pour tout segment, tout point de la médiatrice du segment est à égale distance des extrémités de ce segment.
En géométrie plane, la médiatrice d'un segment est l'ensemble des points équidistants des deux extrémités du segment. Cet ensemble est la droite passant par le milieu du segment et qui est perpendiculaire au segment.
Médiatrice d'un segment : Droite qui passe perpendiculairement en son milieu, Hauteur d'un triangle : Droite qui est perpendiculaire à un côté et qui passe par le sommet opposé, Médiane d'un triangle : Droite qui passe par le milieu d'un côté et par le sommet opposé.
Une médiatrice d'un triangle est une droite perpendiculaire au milieu d'un de ses côtés. Un triangle a donc 3 médiatrices. On peut démontrer la propriété suivante. Théorème - Les trois médiatrice d'un triangle se coupent en un même point.
La médiatrice d'un segment est la droite qui coupe ce segment en son milieu perpendiculairement. Dans un triangle, les médiatrices sont concourantes en un point appelé centre du cercle circonscrit au triangle.
Première méthode : avec une règle graduée et une équerre On commence par placer le milieu I du segment avec la règle. Puis on trace la perpendiculaire à [AB] passant par I avec l'équerre. On prolonge ensuite le trait avec la règle pour obtenir toute la médiatrice.
Un point M est sur le segment [AB] si et seulement si ABk AM = avec 0 < k < 1 .
La médiatrice d'un segment est la droite perpendiculaire à ce segment en son milieu. G est le milieu du segment [AB] et $d \perp (AB)$ donc d est la médiatrice du segment [AB].
Si deux droites forment avec une sécante des angles correspondants égaux, alors ces droites sont parallèles. Si deux droites forment avec une sécante des angles alternes-internes égaux, alors ces deux droites sont parallèles.
Les segments [AB] et [A'B'] sont symétriques par rapport au point O donc AB = A'B'. joint les milieux de deux côtés alors sa longueur est égale à la moitié de celle du troisième côté. Dans le triangle ABC, I est le milieu de [AB] et J est le milieu de [AC] donc IJ = BC 2 . Les droites (BM) et (CN) sont sécantes en A.
Si un point est à égale distance des extrémités d'un segment, alors il appartient à la médiatrice de ce segment. Donc la droite (MN) est la médiatrice du segment [AB]. Elle coupe le segment [AB] en I. Si une droite est la médiatrice d'un segment alors elle coupe ce segment en son milieu.
Les médiatrices des côtés d'un triangle sont concourantes. de [AB] et [BC] (elles sont sécantes car le triangle est non dégénéré). Le point O est sur la médiatrice de [AB] donc on a AO = BO. Comme O est aussi sur la médiatrice de [BC], on a aussi BO = CO.
Les trois hauteurs d'un triangle sont concourantes en un point appelé l'orthocentre du triangle. La médiatrice d'un segment est la droite perpendiculaire à ce segment et qui passe par son milieu. Les trois médiatrices d'un triangle sont concourantes en un point qui est le centre du cercle circonscrit au triangle.
La médiatrice d'un segment est un axe de symétrie de ce segment. Je construis un segment [AB] et je place le milieu I de ce segment, puis à l'aide d'une équerre, je trace la droite Delta, perpendiculaire à [AB] et passant par son milieu comme ceci.
Une droite est dite remarquable dans un triangle lorsqu'elle possède une ou plusieurs propriétés quel que soit le triangle. Il existe 4 types de droites remarquables dans le triangle : la médiane, la médiatrice, la hauteur et la bissectrice.
Si le nombre de valeurs est un nombre impair, il faut lui additionner 1, puis le diviser par 2 pour obtenir le rang qui correspondra à la médiane. Le rang est la position d'une valeur une fois l'ensemble ordonné : la plus petite valeur correspond au rang 1, la seconde plus petite valeur au rang 2, etc.
Le centre du cercle circonscrit au triangle est le point d'intersection des trois médiatrices du triangle. S'il s'agit d'un triangle rectangle, le centre du cercle circonscrit au triangle est le milieu de l'hypoténuse du triangle.
Définition : La segment [AB] est la partie de la droite qui a pour extrémités les points A et B. On ne peut pas prolonger le tracé d'un segment. Exemple : Définition : La demi-droite [AB) est la partie de la droite qui a pour origine le point A et qui passe par le point B.
Milieu, médiatrice, plan médiateur
L'ensemble des points du plan équidistants de deux points A et B constitue la médiatrice du segment [AB]. Le milieu du segment [AB] peut donc être défini comme l'intersection de la droite (AB) avec la médiatrice du segment [AB].