Lorsque =0, la fonction définie par ( ) = est une fonction linéaire. Propriété : Soit une fonction affine définie sur ℝ par ( ) = + . Si >0, alors est croissante. Si <0, alors est décroissante.
Théorème : Soit I un intervalle de R et f:I→R f : I → R dérivable. Alors : f est croissante sur I si et seulement si, pour tout x∈I x ∈ I , f′(x)≥0 f ′ ( x ) ≥ 0 ; f est strictement croissante sur I si et seulement si f′≥0 f ′ ≥ 0 et si f′ n'est identiquement nulle sur aucun intervalle [a,b]⊂I [ a , b ] ⊂ I avec a<b .
Si [a,b] est un intervalle du domaine d'une fonction f, on dit que la fonction f est décroissante dans l'intervalle [a,b] si et seulement si pour tout élément x1 et x2 de [a,b], si x1<x2, alors f(x1)≥f(x2).
La fonction linéaire ou affine est croissante si son coefficient directeur est positif, décroissante s'il est négatif et constante s'il est nul (la fonction est alors égale à un nombre et son expression ne comprend pas de x .
Une fonction f est décroissante sur un intervalle I lorsqu'elle inverse l'ordre des nombres sur cet intervalle. Autrement dit, quelque soient les réels et appartenant à I, si alors f ( a ) ≥ f ( b ) .
Pour montrer qu'une fonction f(x) est croissante, il suffit de montrer f(x + a) > f(x) si a est strictement positif ou ce qui revient au même que f(x + a) - f(x) > 0 si a > 0. Avec f(x) = x3 on y arrive comme suit : (x+a)3−x3=x3+3ax2+3a2x+a3−x3.
Si une fonction f f f est définie, continue et strictement monotone sur un intervalle [ a ; b ] [a; b ] [a;b] alors, pour tout réel k k k compris entre f ( a ) f(a) f(a) et f ( b ) f(b) f(b), l'équation f ( x ) = k f(x)=k f(x)=k a une unique solution dans l'intervalle [ a ; b ] .
Pour déterminer le sens de variation d'une fonction sur un intervalle I, on peut comparer les valeurs de f\left( a \right) et f\left( b \right) où a et b sont deux réels de l'intervalle I vérifiant a\lt b.
Le sens de variation d'une fonction affine dépend du signe du coefficient directeur a a a. Ce coefficient directeur représente la « pente » de la droite représentative de f f f. Si a > 0 a > 0 a>0 la fonction est croissante, la droite « monte ». Si a = 0 a=0 a=0 la fonction est constante, la droite est horizontale.
Résumés. Nous étudions plusieurs démonstrations de la caractérisation suivante des fonctions constantes : une fonction, définie sur un intervalle, dérivable est constante si, et seulement si, sa dérivée est nulle.
Lorsque sur un intervalle les nombres dérivés sont positifs, c'est qu'à cet endroit-ci la fonction est croissante. Graphiquement, ça se traduit par une courbe qui monte et une tangente qui en fait de même puisque son coefficient directeur est positif. Et inversement sur les intervalles où le nombre dérivé est négatif.
On dit qu'une fonction f admet un maximum M en x_0 sur un intervalle I si et seulement si pour tout x qui appartient à I, on a M = f(x_0), avec x_0 \in I, et (f(x) \leq f(x_0) = M. L'existence d'un maximum n'est pas garantie. On prend I = \mathbb{R} et f la fonction carré.
La droite (d) représentant la fonction f définie par f(x) = ax + b a pour coefficient directeur a et pour ordonnée à l'origine b. Remarques : - Si le coefficient directeur est positif alors la droite « monte ». On dit que la fonction affine associée est croissante.
Si le taux de variation est positif (a>0), la fonction est croissante sur tout son domaine. Si le taux de variation est négatif (a<0), la fonction est décroissante sur tout son domaine.
Le maximum M de f sur I est la plus grande valeur de f(x) pour x parcourant I. On a alors pour tout x de I, f(x) ≤ M. Le minimum de f sur I est la plus petite valeur de f(x) pour x parcourant I.
MÉTHODE 1. –
Pour déterminer le sens de variation d'une suite (un), on peut utiliser l'une des règles suivantes : a) On étudie le signe de la différence un+1 − un. ▶ Si un+1 − un est positive, alors la suite (un) est croissante. ▶ Si un+1 − un est négative, alors la suite (un) est décroissante.
Employée en statistiques, l'intervalle de variation tire son nom du fait qu'elle désigne la différence existante entre la valeur la plus élevée et celle la plus faible de la variable statistique, c'est-à-dire sa variation.
En mathématiques, les variations d'une fonction réelle d'une variable réelle sont le caractère croissant ou décroissant des restrictions de cette fonction aux intervalles sur lesquels elle est monotone. Ces informations sont couramment rassemblées dans un tableau de variations.
Si seule la limite à gauche ou à droite existe, alors on dit que la fonction est dérivable en 𝑥 = 𝑥 à gauche ou à droite respectivement. Notez que la dérivée d'une fonction 𝑦 = 𝑓 ( 𝑥 ) peut également être notée d d 𝑦 𝑥 , qui se lit comme « la dérivée de 𝑦 par rapport à 𝑥 » ou « d 𝑦 sur d 𝑥 ».
Soient I un intervalle de R, f : I → R une fonction dérivable et a ∈ I. On dit que f est deux fois dérivable en a si f est dérivable en a. La dérivée de f en a s'appelle la dérivée seconde de f en a et se note f (a). On dit que f est deux fois dérivable si f est dérivable.
Si f est une fonction qui va de [a,b] dans R et si x0∈[a,b], x 0 ∈ [ a , b ] , le taux d'accroissement de f en x0 est la fonction définie, là où c'est possible, par Tx0(h)=f(x0+h)−f(x0)h. T x 0 ( h ) = f ( x 0 + h ) − f ( x 0 ) h .
Soit une fonction continue et strictement monotone sur un intervalle. Si a et b désignent les extrémités de l'intervalle (c'est-à-dire a ou b sont des réels ou sont les symboles − ∞ ou + ∞ ) alors les extrémités de l'intervalle sont lim x → a f ( a ) et lim x → b f ( x ) (ces limites pouvant être elles-mêmes infinies).
Pour dresser le tableau de variations d'une fonction, il faut calculer la dérivée, étudier le signe de celle-ci, et compléter les valeurs aux extrémités de chacune des flèches placées, en faisant attention aux éventuelles valeurs interdites sur l'intervalle d'étude.
si f ' est positive sur I la fonction est croissante sur I. si f ' est négative sur I la fonction est décroissante sur I. Remarques : pour le vocabulaire mathématique, "positive" signifie "positive ou nulle" (et "négative" veut dire "négative ou nulle").