On dit qu'une fonction f est dérivable sur un intervalle I lorsque f est dérivable en tout point de I. On note f la fonction dérivée de f qui à tout x ∈I associe f (x). Si g ne s'annule pas sur I, f g est aussi dérivable sur I et ( f g ) = f g − fg g2 . f (x) = ax + b cx + d .
En mathématiques, une fonction continue nulle part dérivable est une fonction numérique qui est régulière du point de vue topologique (c'est-à-dire continue) mais ne l'est pas du tout du point de vue du calcul différentiel (c'est-à-dire qu'elle n'est dérivable en aucun point).
Une fonction f:I→R f : I → R est donc dérivable en a si et seulement s'il existe α∈R α ∈ R et une fonction ε définie dans un intervalle J ouvert contenant 0 , vérifiant limh→0ε(h)=0 lim h → 0 ε ( h ) = 0 tels que ∀h∈J, f(a+h)=f(a)+αh+hε(h).
Le théorème que tout le monde doit avoir dans sa trousse de secours est : la somme d'une série de fonctions définies sur un intervalle est dérivable dès que chaque terme l'est et que la série des dérivées est uniformément convergente (et que la série originale converge, au moins en un point).
On dit que f est dérivable sur I si et seulement si f est dérivable en chaque point de I et on note alors f′:x↦f′(x) f ′ : x ↦ f ′ ( x ) la fonction dérivée de f sur I ainsi obtenue. On note D1(I) D 1 ( I ) l'ensemble des fonctions dérivables sur I .
Si une fonction est continue sur un intervalle, sa représentation graphique est en un seul morceau. Si la fonction est dérivable, sa représentation graphique admet une tangente en chacun de ses points.
Pour une fonction dérivable f d'une variable, on se rappelle que l'équation de la tangente au graphe au point (a,f (a)) est y = f (a)+(x − a)f (a). Si f est `a deux variables, c'est presque pareil, l'équation du plan tangent au point (a,b,f (a,b)) est z = f (a,b)+(x − a)fx (a,b)+(y − b)fy (a,b).
Définition. Si le quotient T a ( h ) = f ( a + h ) − f ( a ) h tend vers un nombre réel lorsque h tend vers 0, alors on dit que f est dérivable en a.
dérivable
Se dit d'une fonction qui a une dérivée. (On distingue, selon les cas, les fonctions dérivables à droite ou à gauche, dérivables sur un intervalle ouvert ou fermé, dérivables n fois ou indéfiniment dérivables.)
Théorème (théorème fondamental du calcul intégral) : Si f est une fonction continue et positive sur [a,b] , alors la fonction F définie sur [a,b] par F(x)=∫xaf(t)dt F ( x ) = ∫ a x f ( t ) d t est dérivable sur [a,b] , et a pour dérivée f .
On montre que si une fonction est dérivable en un point, elle est également continue en ce point.
Théorème : Soit I un intervalle et f:I→R f : I → R une fonction continue. Alors f admet une primitive sur I . De plus, si a est un point de I , alors la primitive de f sur I qui s'annule en a est la fonction définie pour tout x∈I x ∈ I par F(x)=∫xaf(t)dt.
Comment : Vérifier si une fonction est continue en un point
(Ceci veut dire en d'autres termes que les limites à gauche et à droite de 𝑓 ( 𝑥 ) en 𝑥 = 𝑎 existent et sont égales) ; l i m → 𝑓 ( 𝑥 ) et 𝑓 ( 𝑎 ) doivent avoir la même valeur.
Comme pour une fonction d'une variable réelle, cette propriété sert souvent à montrer qu'une fonction n'est pas continue. alors un tend vers (0, 0) mais f(un) ne tend pas vers f(0, 0) quand n tend vers +∞. pour tout t = 0, ce qui donne une contradiction et prouve par l'absurde que f n'est pas continue en (0,0).
En mathématiques, la continuité est une propriété topologique d'une fonction. En première approche, une fonction f est continue si, à des variations infinitésimales de la variable x, correspondent des variations infinitésimales de la valeur f(x).
Si ƒ est continue et strictement monotone sur un intervalle [a ; b], alors pour tout nombre k compris entre ƒ(a) et ƒ(b), alors l'équation ƒ(x) = k admet une unique solution dans [a ; b]. Pour localiser cette solution, on pourra utiliser sa calculatrice.
Une fonction f définie dans un sous-ensemble E de nombres réels admet un maximum M en un point a de E si M = f(a) et si, quel que soit x de E, f(x) est inférieur ou égal à f(a).
Toute fonction continue sur un segment admet des primitives sur ce segment. En Terminale S, le théorème fondamental du calcul intégral entraîne que toute fonction continue et positive admet une primitive.
Théorème (théorème fondamental du calcul intégral) : Si f est une fonction continue et positive sur [a,b] , alors la fonction F définie sur [a,b] par F(x)=∫xaf(t)dt F ( x ) = ∫ a x f ( t ) d t est dérivable sur [a,b] , et a pour dérivée f .
D'après le théorème des fonctions réciproques, la fonction est dérivable en tout point image d'un tel que. Mais on a : f ′ ( x ) = 0 ⇔ x = 0 , donc est dérivable en tout point autre que. Donc est dérivable sur. Représentation graphique de et de dans un repère orthonormé.
Pour une fonction dérivable f d'une variable, on se rappelle que l'équation de la tangente au graphe au point (a,f (a)) est y = f (a)+(x − a)f (a). Si f est `a deux variables, c'est presque pareil, l'équation du plan tangent au point (a,b,f (a,b)) est z = f (a,b)+(x − a)fx (a,b)+(y − b)fy (a,b).
Ainsi une fonction peut être continue en un point sans être dérivable en ce point. Du coup, si tu as déjà montré ou si tu sais qu'une fonction est dérivable sur un certain intervalle, tu peux dire « elle est dérivable sur cet intervalle donc elle est continue sur cet intervalle » (et pas l'inverse^^).
Définition. Si le quotient T a ( h ) = f ( a + h ) − f ( a ) h tend vers un nombre réel lorsque h tend vers 0, alors on dit que f est dérivable en a.