Tout atome ou molécule est polarisable c'est-à-dire que son nuage électronique se déforme suite à la présence d'un champ électrique. Ce champ électrique est créé par le dipôle permanent de la molécule polaire qui induit un dipôle au niveau de l'autre molécule.
Une molécule est polaire si les positions moyennes des charges partielles positives et négatives ne sont pas confondues. Une molécule est apolaire (non polaire) dans le cas contraire. La géométrie de la molécule aura donc une importance dans la polarité des molécules.
Pour comparer la polarité de deux molécules, nous nous basons sur la différence d'électronégativité . Nous pouvons déterminer si une liaison donnée sera non polaire, polaire covalente ou ionique. Plus la différence d'électronégativité est grande, plus la liaison est polaire.
Une liaison est considérée polarisée si la différence d'électronégativité entre les deux atomes engagés dans la liaison est comprise entre 0,4 et 2,0 environ.
Une molécule est polaire si elle possède des liaisons polarisées et si les positions moyennes des charges électriques partielles positives et négatives ne sont pas confondues. Si l'une des deux conditions n'est pas réalisée, la molécule est apolaire.
La molécule d'eau H2O est une molécule polaire car : • d'une part, elle comporte des liaisons covalentes polaires O - H. De ce fait, l'atome Oxygène O est porteur de 2 charges partielles négatives -2δ et les deux atomes Hydrogène H, porteurs d'une charge partielle +δ chacun (figure 1).
Le dioxyde de soufre est une molécule polaire alors que le dioxyde de carbone est apolaire.
NH3, soit l'ammoniac, a également trois liaisons polarisées. Nous pouvons utiliser les flèches des dipôles pour montrer la polarisation des liaisons. Ces molécules sont polaires car le moment dipolaire d'une liaison polarisée n'annule pas le moment dipolaire des autres liaisons polarisées.
Une molécule qui ne comporte aucune liaison polarisée est apolaire. Exemples : L'acétone possède une unique liaison polarisée : la liaison double C=O. L'acétone est donc une molécule polaire.
Cas de la molécule de dioxyde de carbone CO
Comme la molécule de dioxyde de carbone est linéaire, le moment dipolaire résultant est nul : le barycentre (le milieu) des charges positives est confondu avec le barycentre des charges négatives. La molécule de dioxyde de carbone est une molécule apolaire.
Le chlorure d'hydrogène est donc une molécule polaire. Elle est très soluble dans l'eau et dans les solvants polaires.
Les atomes de carbone et d'hydrogène dans une molécule de méthane, CH4, diffèrent légèrement par leurs électronégativité. Il n'est pas considéré comme une molécule polaire. La différence d'électronégativité est très petite. Quatre dipôles très faibles sont donc créés.
l'ammoniac, NH3, est constitué d'un atome d'azote et des trois atomes d'hydrogène liés par des liaisons N-H faiblement polarisée (l'atome d'azote étant légèrement plus électronégatif que l'hydrogène).
Les matériaux ayant une affinité particulière pour l'eau - ceux sur lesquels ils se propagent, maximisant le contact - sont appelés hydrophiles. Ceux qui repoussent naturellement l'eau, provoquant la formation de gouttelettes, sont appelés hydrophobes.
Un solvant est polaire si la molécule qui le compose est une molécule polaire. Une molécule est polaire si elle respecte les deux conditions suivantes : elle possède des liaisons polarisées ; les positions moyennes des charges partielles positives et négatives ne sont pas confondues.
Ordre relatif de la polarité d'une sélection de solvants purs du plus polaire au moins polaire : Eau (plus polaire) Méthanol. Acétonitrile.
Les solvants polaires présentent des moments dipolaires élevés en raison des liaisons entre des atomes ayant des électronégativités différentes. En revanche, les solvants non polaires ne possèdent que peu ou pas de charges partielles et donc un faible ou nul moment dipolaire.
La molécule d'eau H2O est polaire. La molécule de dichlore Cl2 est apolaire. La molécule de dioxygène O2 est apolaire.
Toutes les liaisons PCl sont polarisées mais la somme de tous les moments dipolaires est égale au vecteur nul : la molécule PCl5 est apolaire.
Par exemple, la molécule de AlCl3(trichlorure d'aluminium) est non polaire car les 3 atomes de chlore sont répartis symétriquement sous forme d'un triangle plat autour de l'atome d'aluminium, bien que la différence d'électronégativité entre chlore et aluminium (environ 1.4-1.6) soit polaire ou en tout cas polarisée.
Les molécules de dioxyde de carbone sont non polaires car elles sont très symétriques. Elles ont deux moments dipolaires électriques, mais ces moments dipolaires s'annulent complètement. La figure montre également que les molécules d'eau sont polaires.
La molécule de H2S n'ayant pas une géométrie linéaire, le barycentre des charges partielles positives (situé en G) n'est pas confondu avec celui des charges négatives (sur S). H2S est donc une molécule polaire. 3. H2S est un composé polaire, il se dissout donc dans un solvant polaire comme l'eau.
Le méthane (CH4) est apolaire. La molécule de chlorométhane (CH3Cl) est polaire car elle comporte une liaison polarisée carbone-chlore. La molécule de dichlorométhane (CH2Cl2) est davantage polaire que le chlorométhane car la polarisation des deux liaison carbone-chlore s'additionnent.
L'huile est apolaire (ou non polaire). À la différence de l'eau, les extrémités de sa molécule n'ont pas des charges opposées. Les différences de polarité expliquent bon nombre d'interactions chimiques. Règle générale, les composés se mélangent s'ils sont similaires et se séparent s'ils sont opposés.
➡️ Le cyclohexane est aussi un solvant apolaire car il ne possède pas de liaisons polarisées tout comme, le pentane et le benzène.